When the light beam propagates in the atmosphere, the signal will be absorbed and scattered by the gas molecules and water mist in the atmosphere, which will cause the loss of power rate. The complex atmospheric envir...When the light beam propagates in the atmosphere, the signal will be absorbed and scattered by the gas molecules and water mist in the atmosphere, which will cause the loss of power rate. The complex atmospheric environment will produce a variety of adverse effects on the signal. The interference produced by these effects overlaps with each other, which will seriously affect the strength of the received signal. Therefore, how to effectively suppress the atmospheric turbulence effect in the random atmospheric turbulence channel, ensure the normal transmission of the signal in the atmospheric channel, and reduce the bit error rate of the communication system, is very necessary to improve the communication system. When processing the received signal, it is an important step to detect the transmitted signal by comparing the received signal with the threshold. In this paper, based on the atmospheric turbulence distribution model, the adaptive signal decision threshold is obtained through the estimation of high-order cumulant. Monte Carlo method is used to verify the performance of adaptive threshold detection. The simulation results show that the high-order cumulant estimation of atmospheric turbulence parameters can realize the adaptive change of the decision threshold with the channel condition. It is shown that the adaptive threshold detection can effectively restrain atmospheric turbulence, improve the performance of free space optical and improve the communication quality.展开更多
As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on ...As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on account of Krylov subspace techniques. The interpolation points are selected by Haar wavelet using weighted self-adaptive threshold methods dynamically. Through the analyses of different types of circuits in very large scale integration( VLSI),the results show that the method proposed in this paper can be more accurate and efficient than Krylov subspace method of multi-shift expansion point using Haar wavelet that are no weighted self-adaptive threshold application in interest frequency range,and more accurate than Krylov subspace method of multi-shift expansion point based on the uniform interpolation point.展开更多
We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that...We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that, the intensity of low order harmonic and photoelectron are gradually enhanced with the increase of the laser intensity, when the laser frequency is not in resonance with the transition frequency between the laser-induced high excited states and the ground state. If the resonance occurs, the intensity of the lower order harmonic is reduced and the interference can be observed in the lower order photoelectron spectra.展开更多
Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ ...Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.展开更多
This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the...This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the original method in the theoretical analysis and VLSI realization.展开更多
In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different ...In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.展开更多
文摘When the light beam propagates in the atmosphere, the signal will be absorbed and scattered by the gas molecules and water mist in the atmosphere, which will cause the loss of power rate. The complex atmospheric environment will produce a variety of adverse effects on the signal. The interference produced by these effects overlaps with each other, which will seriously affect the strength of the received signal. Therefore, how to effectively suppress the atmospheric turbulence effect in the random atmospheric turbulence channel, ensure the normal transmission of the signal in the atmospheric channel, and reduce the bit error rate of the communication system, is very necessary to improve the communication system. When processing the received signal, it is an important step to detect the transmitted signal by comparing the received signal with the threshold. In this paper, based on the atmospheric turbulence distribution model, the adaptive signal decision threshold is obtained through the estimation of high-order cumulant. Monte Carlo method is used to verify the performance of adaptive threshold detection. The simulation results show that the high-order cumulant estimation of atmospheric turbulence parameters can realize the adaptive change of the decision threshold with the channel condition. It is shown that the adaptive threshold detection can effectively restrain atmospheric turbulence, improve the performance of free space optical and improve the communication quality.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2016107)the China Postdoctoral Science Foundation(Grant No.2015M581447)
文摘As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on account of Krylov subspace techniques. The interpolation points are selected by Haar wavelet using weighted self-adaptive threshold methods dynamically. Through the analyses of different types of circuits in very large scale integration( VLSI),the results show that the method proposed in this paper can be more accurate and efficient than Krylov subspace method of multi-shift expansion point using Haar wavelet that are no weighted self-adaptive threshold application in interest frequency range,and more accurate than Krylov subspace method of multi-shift expansion point based on the uniform interpolation point.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11774129,11274141,11627807,11604119,and 11534004)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC)
文摘We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that, the intensity of low order harmonic and photoelectron are gradually enhanced with the increase of the laser intensity, when the laser frequency is not in resonance with the transition frequency between the laser-induced high excited states and the ground state. If the resonance occurs, the intensity of the lower order harmonic is reduced and the interference can be observed in the lower order photoelectron spectra.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)
文摘Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.
基金Supported by the National Natural Science Foundation of China
文摘This paper develops a powerful technique called threshold decomposition which is introduced for the analysis and implementation of median filter. This technique called generalized decomposition(GTD) is better than the original method in the theoretical analysis and VLSI realization.
文摘In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.