期刊文献+
共找到3,881篇文章
< 1 2 195 >
每页显示 20 50 100
Fractional-Order Control of a Wind Turbine Using Manta Ray Foraging Optimization 被引量:2
1
作者 Hegazy Rezk Mohammed Mazen Alhato +1 位作者 Mohemmed Alhaider Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第7期185-199,共15页
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u... In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation. 展开更多
关键词 Renewable energy MODELING wind turbine doubly fed induction generator fractional order control manta ray foraging optimization
在线阅读 下载PDF
Control of fractional chaotic and hyperchaotic systems based on a fractional order controller 被引量:4
2
作者 Li Tian-Zeng Wang Yu Luo Mao-Kang 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期274-284,共11页
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm... We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method. 展开更多
关键词 fractional-order chaotic system chaos control fractional-order controller HYPERCHAOS
原文传递
DESIGNING REDUCED-ORDER CONTROLLERS OF MIXEDSENSITIVITY PROBLEM FOR FLIGHT CONTROL SYSTEMS
3
作者 曾建平 程鹏 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期91-94,共4页
Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not ... Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach. 展开更多
关键词 flight control systems H control LMI reduced order controller
在线阅读 下载PDF
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
4
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 Adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
在线阅读 下载PDF
Fractional Order Modeling of Human Operator Behavior with Second Order Controlled Plant and Experiment Research 被引量:2
5
作者 Jiacai Huang Yang Quan Chen +1 位作者 Haibin Li Xinxin Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期271-280,279-280+272-278,共10页
Modeling human operator's dynamics plays a very important role in the manual closed-loop control system, and it is an active research area for several decades. Based on the characteristics of human brain and behav... Modeling human operator's dynamics plays a very important role in the manual closed-loop control system, and it is an active research area for several decades. Based on the characteristics of human brain and behavior, a new kind of fractional order mathematical model for human operator in single-input single-output (SISO) systems is proposed. Compared with the traditional models based on the commonly used quasilinear transfer function method or the optimal control theory method, the proposed fractional order model has simpler structure with only few parameters, and each parameter has explicit physical meanings. The actual data and experiment results with the second-order controlled plant illustrate the effectiveness of the proposed method. © 2014 Chinese Association of Automation. 展开更多
关键词 CALCULATIONS Closed loop control systems Mathematical operators
在线阅读 下载PDF
Simplified Optimization Routine for Tuning Robust Fractional Order Controllers
6
作者 Cristina I. Muresan 《American Journal of Computational Mathematics》 2013年第3期7-12,共6页
Fractional order controllers have been used intensively over the last decades in controlling different types of processes. The main methods for tuning such controllers are based on a frequency domain approach followed... Fractional order controllers have been used intensively over the last decades in controlling different types of processes. The main methods for tuning such controllers are based on a frequency domain approach followed by optimization routine, generally in the form of the Matlab fminsearch, but also evolving to more complex routines, such as the genetic algorithms. An alternative to these time consuming optimization routines, a simple graphical method has been proposed. However, these graphical methods are not suitable for all combinations of the imposed performance specifications. To preserve their simplicity, but also to make these graphical methods generally applicable, a modified graphical method using a very straightforward and simple optimization routine is proposed within the paper. Two case studies are presented, for tuning fractional order PI and PD controllers. 展开更多
关键词 FRACTIONAL order controllers GRAPHICAL Tuning Simplified OPTIMIZATION ROUTINE
在线阅读 下载PDF
Logically ordered control of organic room-temperature long-lived supramolecular luminophors
7
作者 Xinhui Fan Yonghao Fan +10 位作者 Yuli Dang Puhui Xie Xin Li Zhanqi Cao Song Jiang Lijie Liu Xin Zheng Lixia Xie Caoyuan Niu Guoxing Liu Yong Chen 《Chinese Chemical Letters》 2025年第8期303-308,共6页
Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive ... Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting. 展开更多
关键词 Supramolecular chemistry Logically ordered control Long-lived luminescentswitch TS-FRET Stepwise assembly RTP
原文传递
Fractional order modeling and control of dissimilar redundant actuating system used in large passenger aircraft 被引量:4
8
作者 Salman IJAZ Lin YAN Mirza Tariq HAMAYUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1141-1152,共12页
In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators.The nonlinear dynamics of both actu... In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators.The nonlinear dynamics of both actuators are first approximated as fractional order models. Based on the identified models, three fractional order controllers are proposed for the whole system. Two Fractional Order PID(FOPID) controllers are dedicated to improving transient response and are designed in a position feedback configuration. In order to synchronize the actuator dynamics, a third fractional order PI controller is designed, which feeds the force compensation signal in position feedback loop of both actuators. Nelder-Mead(N-M) optimization technique is employed in order to optimally tune controller parameters based on the proposed performance criteria. To test the proposed controllers according to real flight condition, an external disturbance of higher amplitude that acts as airload is applied directly on the control surface. In addition, a disturbance signal function of system states is applied to check the robustness of proposed controller. Simulation results on nonlinear system model validated the performance of the proposed scheme as compared to optimal PID and high gain PID controllers. 展开更多
关键词 AEROSPACE Fractional order control Model identification Nelder-Mead optimization ROBUSTNESS
原文传递
Fractional order adaptive robust formation control of multiple quad-rotor UAVs with parametric uncertainties and wind disturbances 被引量:2
9
作者 Nasim ULLAH Yasir MEHMOOD +2 位作者 Jawad ASLAM Shaoping WANG Khamphe PHOUNGTHONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期204-220,共17页
In recent times,multiple Unmanned Aerial Vehicles(UAVs)are being widely utilized in several areas of applications such as agriculture,surveillance,disaster management,search and rescue operations.Degree of robustness ... In recent times,multiple Unmanned Aerial Vehicles(UAVs)are being widely utilized in several areas of applications such as agriculture,surveillance,disaster management,search and rescue operations.Degree of robustness of applied control schemes determines how accurate a swarm of UAVs accomplish group tasks.Formation and trajectory tracking controllers are required for the swarm of multiple UAVs.Factors like external environmental effects,parametric uncertainties and wind gusts make the controller design process as a challenging task.This article proposes fractional order formation and trajectory tacking controllers for multiple quad-rotors using Super Twisting Sliding Mode Control(STSMC)technique.To compensate the effects of the disturbances due to parametric uncertainties and wind gusts,Lyapunov function based adaptive controllers are formulated.Moreover,Lyapunov theorem is used to guarantee the stability of the proposed controllers.Three types of controllers,namely fixed gain STSMC and fractional order Adaptive Super Twisting Sliding Mode Control(ASTSMC)methods are tested for the swarm of UAVs by performing the numerical simulations in MATLAB/Simulink environment.From the presented results,it is verified that in presence of wind disturbances and parametric uncertainties,the proposed fractional order ASTSMC technique showed improved robustness as compared to the fixed gain STSMC and integer order ASTSMC. 展开更多
关键词 Adaptive robust control Fractional order control Nonlinear control Quad-rotor UAVs Swarm formation control
原文传递
A novel fractional order controller design algorithm for a class of linear systems
10
作者 Gandikota Gurumurthy Dushmanta Kumar Das 《Journal of Control and Decision》 EI 2022年第2期218-225,共8页
In this paper,a novel fractional order controller design algorithm is proposed for a class of linear systems.The proposed control algorithm is developed by employing Riemann principal sheet stability criterion.Oustalo... In this paper,a novel fractional order controller design algorithm is proposed for a class of linear systems.The proposed control algorithm is developed by employing Riemann principal sheet stability criterion.Oustaloup recursive approximation(ORA)method is used to implement the controller.The proposed controller is implemented in simulation.The results show that the proposed fractional order controller provides better results than the existing controllers in the literature work. 展开更多
关键词 Fractional order controller Oustaloup recursive approximation(ORA) Riemann principal sheet and fractional order calculus
原文传递
Control of a fractional chaotic system based on a fractional-order resistor-capacitor filter
11
作者 张路 邓科 罗懋康 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期133-141,共9页
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed co... We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method. 展开更多
关键词 fractional chaotic system chaos control fractional-order controller resistor capacitorfilter
原文传递
Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode 被引量:15
12
作者 Jie Wang Qun Zong +1 位作者 Bailing Tian Helong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期288-295,共8页
The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ... The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy. 展开更多
关键词 flexible air-breathing hypersonic vehicle nonlinear robust controller high order sliding mode control output tracking control
在线阅读 下载PDF
Digital implementation of fractional order PID controller and its application 被引量:3
13
作者 WangZhenbin WangZhenlei CaoGuangyi ZhuXinjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期116-122,共7页
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult ... A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay. 展开更多
关键词 fractional calculus fractional order PID controller discretization Z-transform nonlinear system.
在线阅读 下载PDF
Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System 被引量:4
14
作者 Amit S.Chopade Swapnil W.Khubalkar +2 位作者 A.S.Junghare M.V.Aware Shantanu Das 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期977-989,共13页
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M... The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance. 展开更多
关键词 Approximation methods digital control dis-cretization fractional calculus fractional order PID controller(FO-PID) magnetic levitation particle swarm optimization(PSO) position control.
在线阅读 下载PDF
Local Bifurcation Analysis of a Delayed Fractional-order Dynamic Model of Dual Congestion Control Algorithms 被引量:7
15
作者 Min Xiao Guoping Jiang +1 位作者 Jinde Cao Weixing Zheng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期361-369,共9页
In this paper, we propose a delayed fractional-order congestion control model which is more accurate than the original integer-order model when depicting the dual congestion control algorithms. The presence of fractio... In this paper, we propose a delayed fractional-order congestion control model which is more accurate than the original integer-order model when depicting the dual congestion control algorithms. The presence of fractional orders requires the use of suitable criteria which usually make the analytical work so harder. Based on the stability theorems on delayed fractionalorder differential equations, we study the issue of the stability and bifurcations for such a model by choosing the communication delay as the bifurcation parameter. By analyzing the associated characteristic equation, some explicit conditions for the local stability of the equilibrium are given for the delayed fractionalorder model of congestion control algorithms. Moreover, the Hopf bifurcation conditions for general delayed fractional-order systems are proposed. The existence of Hopf bifurcations at the equilibrium is established. The critical values of the delay are identified, where the Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Same as the delay, the fractional order normally plays an important role in the dynamics of delayed fractional-order systems. It is found that the critical value of Hopf bifurcations is crucially dependent on the fractional order. Finally, numerical simulations are carried out to illustrate the main results. © 2017 Chinese Association of Automation. 展开更多
关键词 ALGEBRA Bifurcation (mathematics) Congestion control (communication) Convergence of numerical methods Differential equations Stability
在线阅读 下载PDF
Second Order Sliding Mode Control for Discrete Decouplable Multivariable Systems via Input-output Models 被引量:2
16
作者 Houda Romdhane Khadija Dehri Ahmed Said Nouri 《International Journal of Automation and computing》 EI CSCD 2015年第6期630-638,共9页
The problem of the chattering phenomenon is still the main drawback of the classical sliding mode control. To resolve this problem, a discrete second order sliding mode control via input-output model is proposed in th... The problem of the chattering phenomenon is still the main drawback of the classical sliding mode control. To resolve this problem, a discrete second order sliding mode control via input-output model is proposed in this paper. The proposed control law is synthesized for decouplable multivariable systems. A robustness analysis of the proposed discrete second order sliding mode control is carried out. Simulation results are presented to illustrate the effectiveness of the proposed strategy. 展开更多
关键词 Discrete second order sliding mode control decoupl
原文传递
Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm 被引量:8
17
作者 XU Fei-xiang LIU Xin-hui +2 位作者 CHEN Wei ZHOU Chen CAO Bing-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2340-2353,共14页
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of... Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness. 展开更多
关键词 steer-by-wire system emergency rescue vehicle fractional order proportional-integral-derivative(FOPID)controller parameter optimization genetic algorithm
在线阅读 下载PDF
High-order sliding mode attitude controller design for reentry flight 被引量:7
18
作者 Liang Wang Yongzhi Sheng Xiangdong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期848-858,共11页
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ... A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results. 展开更多
关键词 reentry vehicle attitude control high-order sliding mode control integral sliding mode.
在线阅读 下载PDF
Design and Robust Performance Evaluation of a Fractional Order PID Controller Applied to a DC Motor 被引量:10
19
作者 J.Viola L.Angel J.M.Sebastian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期304-314,共11页
This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fraction... This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors. 展开更多
关键词 Factorial experimental design fractional-order PID controller robustness analysis SIMC PID controller
在线阅读 下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor 被引量:2
20
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
在线阅读 下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部