A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their...A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their spatial distributions.Multi-layer perceptron neural networks(MLP-NNs)are commonly used for classification.Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently.Conventional methods for training NNs,such as gradient descent and recursive methods,have some disadvantages including low accuracy,slow convergence speed and trapping in local minimums.In this paper,in order to overcome these issues,the MLP-NN trained by a hybrid population-physics-based algorithm,the combination of particle swarm optimization and gravitational search algorithm(PSOGSA),is proposed for our classification problem.To show the advantages of using PSOGSA that trains NNs,this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization(PSO),gravitational search algorithm(GSA)and new versions of PSO.The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics.The results show that the proposed algorithm in most subjects of encephalography(EEG)dataset has very better or acceptable performance compared to others.展开更多
This paper presents the development of an artificial neural network (ANN) model based on the multi-layer perceptron (MLP) for analyzing internet traffic data over IP networks. We applied the ANN to analyze a time seri...This paper presents the development of an artificial neural network (ANN) model based on the multi-layer perceptron (MLP) for analyzing internet traffic data over IP networks. We applied the ANN to analyze a time series of measured data for network response evaluation. For this reason, we used the input and output data of an internet traffic over IP networks to identify the ANN model, and we studied the performance of some training algorithms used to estimate the weights of the neuron. The comparison between some training algorithms demonstrates the efficiency and the accu-racy of the Levenberg-Marquardt (LM) and the Resilient back propagation (Rp) algorithms in term of statistical crite-ria. Consequently, the obtained results show that the developed models, using the LM and the Rp algorithms, can successfully be used for analyzing internet traffic over IP networks, and can be applied as an excellent and fundamental tool for the management of the internet traffic at different times.展开更多
In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow conv...In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.展开更多
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom...Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.展开更多
文摘A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their spatial distributions.Multi-layer perceptron neural networks(MLP-NNs)are commonly used for classification.Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently.Conventional methods for training NNs,such as gradient descent and recursive methods,have some disadvantages including low accuracy,slow convergence speed and trapping in local minimums.In this paper,in order to overcome these issues,the MLP-NN trained by a hybrid population-physics-based algorithm,the combination of particle swarm optimization and gravitational search algorithm(PSOGSA),is proposed for our classification problem.To show the advantages of using PSOGSA that trains NNs,this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization(PSO),gravitational search algorithm(GSA)and new versions of PSO.The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics.The results show that the proposed algorithm in most subjects of encephalography(EEG)dataset has very better or acceptable performance compared to others.
文摘This paper presents the development of an artificial neural network (ANN) model based on the multi-layer perceptron (MLP) for analyzing internet traffic data over IP networks. We applied the ANN to analyze a time series of measured data for network response evaluation. For this reason, we used the input and output data of an internet traffic over IP networks to identify the ANN model, and we studied the performance of some training algorithms used to estimate the weights of the neuron. The comparison between some training algorithms demonstrates the efficiency and the accu-racy of the Levenberg-Marquardt (LM) and the Resilient back propagation (Rp) algorithms in term of statistical crite-ria. Consequently, the obtained results show that the developed models, using the LM and the Rp algorithms, can successfully be used for analyzing internet traffic over IP networks, and can be applied as an excellent and fundamental tool for the management of the internet traffic at different times.
基金Sponsored by the Natural Scientific Research Foundation of Heilongjiang Province(Grant No.40000045-6-07259)the Natural Scientific Research Inno-vation Foundation of Harbin Institute of Technology(Grant No.HIT.NSRIF.2008.59)+1 种基金the Scientific and Technology Critical Project of Harbin,Hei-longjiang Province(2004)the National Soft Science Key Foundation(Grant No.2008GXS5D113)
文摘In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.
文摘Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.