The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu...The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.展开更多
The present paper deals with the Cauchy problem to a two-fluid plasma model with unequal viscosities in any dimension N≥2.Employing the precise spectral analysis for the corresponding linearized system,we prove the g...The present paper deals with the Cauchy problem to a two-fluid plasma model with unequal viscosities in any dimension N≥2.Employing the precise spectral analysis for the corresponding linearized system,we prove the global well-posedness provided that the initial data are close to a stable equilibrium state in critical functional framework which is not related to the energy space.Moreover,the optimal decay rates for the constructed global solution are also established.展开更多
This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution ...This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution using the characteristic and energy methods.Then,under the small assumption of the mass of the particle,we show that the solutions decay at the algebraic time-decay rate.Finally,it is also proved that the above rate is optimal.It should be remarked that if the particle in the coupled system vanishes(i.e.f=O),our works coincide with the classical results by Schonbek[32](J Amer Math Soc,1991,4:423-449),which can be regarded as a generalization from a single fuid model to the two-phase fluid one.展开更多
A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can...A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.展开更多
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef...Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord...We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.展开更多
Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for ...Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for training Artificial Neural Networks (ANNs) has remained a challenging task due to the diverse sizes, complexity, and types of data involved. Design/Method/Approach: This research used a RandomizedSearchCV algorithm, a random search approach, to bridge this knowledge gap. The algorithm was applied to container dwell time data from the TOS system of the Port of Tema, which included 307,594 container records from 2014 to 2022. Findings: The RandomizedSearchCV method outperformed standard training methods both in terms of reducing training time and improving prediction accuracy, highlighting the significant role of the constant learning rate as a hyperparameter. Research Limitations and Implications: Although the study provides promising outcomes, the results are limited to the data extracted from the Port of Tema and may differ in other contexts. Further research is needed to generalize these findings across various port systems. Originality/Value: This research underscores the potential of RandomizedSearchCV as a valuable tool for optimizing ANN training in container dwell time prediction. It also accentuates the significance of automated learning rate selection, offering novel insights into the optimization of container dwell time prediction, with implications for improving port efficiency and supply chain operations.展开更多
Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were condu...Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.展开更多
The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consis...The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.展开更多
Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are con...Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are contributed to solving these problems.First,the improved artificial potential field(APF)method is adopted to accelerate the convergence process of the bat’s position update.Second,the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm.Third chaos strategy is proposed to avoid falling into a local optimum.Compared with standard APF and chaos strategy in UAV path planning scenarios,the improved algorithm CPFIBA(The improved artificial potential field method combined with chaotic bat algorithm,CPFIBA)significantly increases the success rate of finding suitable planning path and decrease the convergence time.Simulation results show that the proposed algorithm also has great robustness for processing with path planning problems.Meanwhile,it overcomes the shortcomings of the traditional meta-heuristic algorithms,as their convergence process is the potential to fall into a local optimum.From the simulation,we can see also obverse that the proposed CPFIBA provides better performance than BA and DEBA in problems of UAV path planning.展开更多
In this paper, we combine the method of constructing the compensating function introduced by Kawashima and the standard energy method for the study on the Landau equation with external forcing. Both the global existen...In this paper, we combine the method of constructing the compensating function introduced by Kawashima and the standard energy method for the study on the Landau equation with external forcing. Both the global existence of solutions near the time asymptotic states which are local Maxwellians and the optimal convergence rates are obtained. The method used here has its own advantage for this kind of studies because it does not involve the spectrum analysis of the corresponding linearized operator.展开更多
The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data...The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.展开更多
Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on ratione...Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.展开更多
This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and...This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.展开更多
Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The ...Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The effects of step factor, the number of control points and the definition way of control points coordinates in convergence rate were studied. A code was written using ANSYS Parametric Design Language (APDL) which receives the studied parameters as input and obtains the optimum shape for the components. The results show that for achieving successful optimization, step factor should be in a specific range. It is found that the use of any coordinate system in defining control points coordinates and selection of any direction for stimulus vector of algorithm will also result in optimum shape. Furthermore, by increasing the number of control points, some non-uniformities are created in the studied boundary. Achieving acceptable accuracy seems impossible due to the creation of saw form at the studied boundary which is called "saw position".展开更多
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate...In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.展开更多
We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a cons...We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.展开更多
ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
An improved rate distortion optimization (RDO) algorithm in JPEG2000 is proposed. The proposed algorithm is suitable for integrated circuit (IC) implementation and can reduce 30% computational cost. A hardware arc...An improved rate distortion optimization (RDO) algorithm in JPEG2000 is proposed. The proposed algorithm is suitable for integrated circuit (IC) implementation and can reduce 30% computational cost. A hardware architecture which includes control unit, memory, divider, data converter is also given to implement the algorithm. The circuit based on the improved algorithm is tested on FPGAs and integrated in a JPG2000 chip codec core.展开更多
文摘The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.
基金supported by the National Natural Science Foundation of China(Grant No.11971100)the Natural Science Foundation of Shanghai(Grant No.22ZR1402300)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12326430)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA017).
文摘The present paper deals with the Cauchy problem to a two-fluid plasma model with unequal viscosities in any dimension N≥2.Employing the precise spectral analysis for the corresponding linearized system,we prove the global well-posedness provided that the initial data are close to a stable equilibrium state in critical functional framework which is not related to the energy space.Moreover,the optimal decay rates for the constructed global solution are also established.
基金supported by the Anhui Provincial Natural Science Foundation(2408085QA031)the third author's work was supported by the National Natural Science Foundation of China(12001033).
文摘This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution using the characteristic and energy methods.Then,under the small assumption of the mass of the particle,we show that the solutions decay at the algebraic time-decay rate.Finally,it is also proved that the above rate is optimal.It should be remarked that if the particle in the coupled system vanishes(i.e.f=O),our works coincide with the classical results by Schonbek[32](J Amer Math Soc,1991,4:423-449),which can be regarded as a generalization from a single fuid model to the two-phase fluid one.
文摘A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.
基金financially supported by the National Key R&D Program of China (2022YFD1900702 and 2021YFD1900700)the Key Research and Development Program of Shaanxi, China (2023-ZDLNY-52)the National Natural Science Foundation of China (42077102)
文摘Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
基金partially supported by the National Nature Science Foundation of China(12271114)the Guangxi Natural Science Foundation(2023JJD110009,2019JJG110003,2019AC20214)+2 种基金the Innovation Project of Guangxi Graduate Education(JGY2023061)the Key Laboratory of Mathematical Model and Application(Guangxi Normal University)the Education Department of Guangxi Zhuang Autonomous Region。
文摘We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.
文摘Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for training Artificial Neural Networks (ANNs) has remained a challenging task due to the diverse sizes, complexity, and types of data involved. Design/Method/Approach: This research used a RandomizedSearchCV algorithm, a random search approach, to bridge this knowledge gap. The algorithm was applied to container dwell time data from the TOS system of the Port of Tema, which included 307,594 container records from 2014 to 2022. Findings: The RandomizedSearchCV method outperformed standard training methods both in terms of reducing training time and improving prediction accuracy, highlighting the significant role of the constant learning rate as a hyperparameter. Research Limitations and Implications: Although the study provides promising outcomes, the results are limited to the data extracted from the Port of Tema and may differ in other contexts. Further research is needed to generalize these findings across various port systems. Originality/Value: This research underscores the potential of RandomizedSearchCV as a valuable tool for optimizing ANN training in container dwell time prediction. It also accentuates the significance of automated learning rate selection, offering novel insights into the optimization of container dwell time prediction, with implications for improving port efficiency and supply chain operations.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2009CB118606)the Special Fund for Agriculture Profession of China (No. 200803030)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period (No. 2006BAD25B02)
文摘Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.
基金The research of the first author was partially supported by the NNSFC No.10871134the NCET support of the Ministry of Education of China+4 种基金the Huo Ying Dong Fund No.111033the Chuang Xin Ren Cai Project of Beijing Municipal Commission of Education #PHR201006107the Instituteof Mathematics and Interdisciplinary Science at CNUThe research of the second author was supported by the General Research Fund of Hong Kong (CityU 103109)the National Natural Science Foundation of China,10871082
文摘The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.
基金This project is supported by National Science Foundation for Young Scientists of China(61701322)the Key Projects of Liaoning Natural Science Foundation(20170540700)+3 种基金the Key Projects of Liaoning Provincial Department of Education Science Foundation(L201702)Liaoning Natural Science Foundation(201502008,20102175)the Program for Liaoning Excellent Talents in University(LJQ2012011)the Liaoning Provincial Department of Education Science Foundation(L201630).
文摘Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are contributed to solving these problems.First,the improved artificial potential field(APF)method is adopted to accelerate the convergence process of the bat’s position update.Second,the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm.Third chaos strategy is proposed to avoid falling into a local optimum.Compared with standard APF and chaos strategy in UAV path planning scenarios,the improved algorithm CPFIBA(The improved artificial potential field method combined with chaotic bat algorithm,CPFIBA)significantly increases the success rate of finding suitable planning path and decrease the convergence time.Simulation results show that the proposed algorithm also has great robustness for processing with path planning problems.Meanwhile,it overcomes the shortcomings of the traditional meta-heuristic algorithms,as their convergence process is the potential to fall into a local optimum.From the simulation,we can see also obverse that the proposed CPFIBA provides better performance than BA and DEBA in problems of UAV path planning.
基金supported by Strategic Research Grant of City University of Hong Kong, 7002129the Changjiang Scholar Program of Chinese Educational Ministry in Shanghai Jiao Tong University+1 种基金The research of the second author was supported partially by NSFC (10601018)partially by FANEDD
文摘In this paper, we combine the method of constructing the compensating function introduced by Kawashima and the standard energy method for the study on the Landau equation with external forcing. Both the global existence of solutions near the time asymptotic states which are local Maxwellians and the optimal convergence rates are obtained. The method used here has its own advantage for this kind of studies because it does not involve the spectrum analysis of the corresponding linearized operator.
基金supported by NSFC (10872004)National Basic Research Program of China (2010CB731500)the China Ministry of Education (200800010013)
文摘The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.
基金supported by the National Key R&D Program of China(2017YFD0200200 and 2017YFD0200207)the National Natural Science Foundation of China(31760611,32060718 and 31560581)the Yunnan Agricultural Foundation Joint Project,China(2018FG001-071)。
文摘Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.
基金supported by the NSFC (10871134),supported by the NSFC (10871134, 10771008)the NCET support of the Ministry of Education of China+1 种基金the Huo Ying Dong Fund (111033)the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107)
文摘This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.
文摘Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The effects of step factor, the number of control points and the definition way of control points coordinates in convergence rate were studied. A code was written using ANSYS Parametric Design Language (APDL) which receives the studied parameters as input and obtains the optimum shape for the components. The results show that for achieving successful optimization, step factor should be in a specific range. It is found that the use of any coordinate system in defining control points coordinates and selection of any direction for stimulus vector of algorithm will also result in optimum shape. Furthermore, by increasing the number of control points, some non-uniformities are created in the studied boundary. Achieving acceptable accuracy seems impossible due to the creation of saw form at the studied boundary which is called "saw position".
文摘In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.
基金Supported by National Natural Science Foundation of China(11271305,11161011)Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)
文摘We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
基金This project was supported by the National"863"High Technology Programof China (2002AA1Z1420)
文摘An improved rate distortion optimization (RDO) algorithm in JPEG2000 is proposed. The proposed algorithm is suitable for integrated circuit (IC) implementation and can reduce 30% computational cost. A hardware architecture which includes control unit, memory, divider, data converter is also given to implement the algorithm. The circuit based on the improved algorithm is tested on FPGAs and integrated in a JPG2000 chip codec core.