Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili...Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditio...For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ...To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.展开更多
This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power dis...This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela...Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.展开更多
This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the i...This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.展开更多
The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity ...The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity,thereby directly influencing the effectiveness of thermal management,including the mitigation of local hot-spot temperatures.This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX(plastic-bonded explosive)matrix,focusing specifically on the thermal management of hot spots.Through finite element method(FEM)simulations,we have explored the impact of graphene filler orientation,proximity to the central heat source,and spatial clustering on heat transfer.Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels,which significantly reduce the temperatures at local hot spots.In a model containing 0.336%graphene by volume,the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material,under a heat flux of 600 W/m^(2).This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers,aiming to improve the thermal management capabilities of HMX-based PBX explosives.展开更多
In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss ...In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss accumulated.Moreover,we focus on distributed algorithms which do not use gradient information and projection operators to improve the applicability and computational efficiency.By introducing the deterministic differences and the randomized differences to substitute the gradient information of the objective functions and removing the projection operator in the traditional algorithms,we design two kinds of gradient-free distributed online optimization algorithms without projection step,which can economize considerable computational resources as well as has less limitations on the applicability.We prove that both of two algorithms achieves consensus of the estimates and regrets of\(O\left(\log(T)\right)\)for local strongly convex objective,respectively.Finally,a simulation example is provided to verify the theoretical results.展开更多
The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm...The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.展开更多
This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into accoun...This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks.展开更多
A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, ...A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, and the objective function accounts for both the change of generation and consumption of the byproduct gases and the demand of low (or middle) pressure steam and electricity for each period to maximize the benefit of products cost and minimize the consumption of energy. The results indicate that the optimal distribution scheme of byproduct gases, middle pressure steam, low pressure steam and electricity is achieved and case study shows that 6% of operation cost is reduced by using the proposed model comparing with the previous model.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m...Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods...It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods for optimization based on connectivity of the network. The calculation structure of connectivity of complex network is analyzed in the paper. The coefficient matrixes of Taylor second order expansion of the system connectivity is generated based on the calculation structure of connectivity of complex network. An optimal schedule is achieved based on genetic algorithms (GA). Fitness of seeds is calculated using the Taylor expansion function of system connectivity. Precise connectivity of the optimal schedule and the Taylor expansion function of system connectivity can be achieved by the approved Minty method or the recursive decomposition algorithm. When error between approximate connectivity and the precise value exceeds the assigned value, the optimization process is continued using GA, and the Taylor function of system connectivity needs to be renewed. The optimization process is called iterative GA. Iterative GA can be used in the large network for optimal reliability attribution. One temporary optimal result will be generated every time in the iteration process. These temporary optimal results approach the real optimal results. They can be regarded as a group of approximate optimal results useful in the real project.展开更多
基金supported by National Key Research and Development Program(2024YFE0115600).
文摘Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金National Natural Science FOundation of China! (No. 59974010).
文摘For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金supported by the National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22).
文摘To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.
文摘This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by National Key Research and Development Program of China(2022YFB3305900)National Natural Science Foundation of China(62394343,62394345)+1 种基金Major Science and Technology Projects of Longmen Laboratory(NO.LMZDXM202206)Shanghai Rising-Star Program under Grant 24QA2706100.
文摘Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.
基金supported by the Science and Technology Project of China South Power Grid Co.,Ltd.under Grant No.036000KK52222044(GDKJXM20222430).
文摘This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.
基金supported by the National Natural Science Foundation of China(Grant No.U2330208).
文摘The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity,thereby directly influencing the effectiveness of thermal management,including the mitigation of local hot-spot temperatures.This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX(plastic-bonded explosive)matrix,focusing specifically on the thermal management of hot spots.Through finite element method(FEM)simulations,we have explored the impact of graphene filler orientation,proximity to the central heat source,and spatial clustering on heat transfer.Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels,which significantly reduce the temperatures at local hot spots.In a model containing 0.336%graphene by volume,the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material,under a heat flux of 600 W/m^(2).This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers,aiming to improve the thermal management capabilities of HMX-based PBX explosives.
文摘In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss accumulated.Moreover,we focus on distributed algorithms which do not use gradient information and projection operators to improve the applicability and computational efficiency.By introducing the deterministic differences and the randomized differences to substitute the gradient information of the objective functions and removing the projection operator in the traditional algorithms,we design two kinds of gradient-free distributed online optimization algorithms without projection step,which can economize considerable computational resources as well as has less limitations on the applicability.We prove that both of two algorithms achieves consensus of the estimates and regrets of\(O\left(\log(T)\right)\)for local strongly convex objective,respectively.Finally,a simulation example is provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(62103203)
文摘The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.
基金supported in part by the National Key Research and Development Program of China(2022ZD0120001)the National Natural Science Foundation of China(62233004,62273090,62073076)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)
文摘This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks.
基金Item Sponsored by Fundamental Research Funds for Central University of China(N090302010)National High-Tech Researchand Development Program of China(2008AA042901)National Key Science and Technology Support Plan of Ministry of Science and Technology of China(2006BAE03A00)
文摘A mathematical model of optimal energy medium distribution in steelmaking process is formulated. In this model, three kinds of important energy mediums including byproduct gases, steam and electricity are considered, and the objective function accounts for both the change of generation and consumption of the byproduct gases and the demand of low (or middle) pressure steam and electricity for each period to maximize the benefit of products cost and minimize the consumption of energy. The results indicate that the optimal distribution scheme of byproduct gases, middle pressure steam, low pressure steam and electricity is achieved and case study shows that 6% of operation cost is reduced by using the proposed model comparing with the previous model.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金supported in part by the National Natural Science Foundation of China under grants 61971080,61901367in part by the Natural Science Foundation of Shaanxi Province under grant 2020JQ-844in part by the open-end fund of the Engineering Research Center of Intelligent Air-ground Integrated Vehicle and Traffic Control(ZNKD2021-001)。
文摘Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金supported by the Shanghai Municipal Education Commission (No. 05AZ74)the Shanghai Science and Technology Committee (No. 04JC14035)
文摘It is a non-polynomial complexity problem to calculate connectivity of the complex network. When the system reliability cannot be expressed as a function of element reliability, we have to apply some heuristic methods for optimization based on connectivity of the network. The calculation structure of connectivity of complex network is analyzed in the paper. The coefficient matrixes of Taylor second order expansion of the system connectivity is generated based on the calculation structure of connectivity of complex network. An optimal schedule is achieved based on genetic algorithms (GA). Fitness of seeds is calculated using the Taylor expansion function of system connectivity. Precise connectivity of the optimal schedule and the Taylor expansion function of system connectivity can be achieved by the approved Minty method or the recursive decomposition algorithm. When error between approximate connectivity and the precise value exceeds the assigned value, the optimization process is continued using GA, and the Taylor function of system connectivity needs to be renewed. The optimization process is called iterative GA. Iterative GA can be used in the large network for optimal reliability attribution. One temporary optimal result will be generated every time in the iteration process. These temporary optimal results approach the real optimal results. They can be regarded as a group of approximate optimal results useful in the real project.