Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may...Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.展开更多
Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nic...Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
Understanding and clarifying the evolution of microstructure and performance of Al-Zr-Sc alloy wires during processing paths is a crucial issue in developing heat-resistant conductors with high strength and high elect...Understanding and clarifying the evolution of microstructure and performance of Al-Zr-Sc alloy wires during processing paths is a crucial issue in developing heat-resistant conductors with high strength and high electrical conductivity(EC).In this study,the microstructure evolution and corresponding performance changes of Al-0.2Zr-0.06Sc alloy wires produced by three processing paths are investigated.Results indicate that ageing treatment+hot extrusion+cold drawing processing path can produce the highest strength Al-Zr-Sc wires attributed to favorable interactions among precipitation strengthening of Al_(3)(Zr,Sc)phases,grain boundary strengthening and dislocation strengthening.High EC is attained by the hot extrusion+ageing treatment+cold drawing processing path,which reveals the importance of dynamic precipitation of Al_(3)Sc phases during hot extrusion and further precipitation of solute atoms during ageing treatment for improving the EC.The processing path using hot extrusion+cold drawing+ageing treatment achieves the highest EC of the Al-Zr-Sc wire,but the strength decreases significantly due to the loss of dislocation strengthening.Additionally,the pinning effect of Al_(3)Sc and Al_(3)(Zr,Sc)ensures good heat resistance of Al-Zr-Sc wires.These results provide guidance for the process design of Al-Zr-Sc wires with variable combinations of strength and EC.展开更多
The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940...The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).展开更多
This paper studies rotor spinning blended yam produced of spun silk and cashmere. Nine samples were spun, from three different opening rollers and different navels. According to the Uster test results of yam quality p...This paper studies rotor spinning blended yam produced of spun silk and cashmere. Nine samples were spun, from three different opening rollers and different navels. According to the Uster test results of yam quality properties, optimum selection is done by using analysis method of combining fuzzy decision-making and fuzzy pattern classification. Experimental plan is designed based on universal rotated experimental design, and the method of confined optimization is used to optimize the speed of opening roller, the speed of rotor and twist factor, according to the results of yam quality test by Uster.展开更多
The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the ma...The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.展开更多
Background Acute myocardial infarction is a common and prevalent cardiovascular disease that can lead to serious consequences such as shock,arrhythmia,and heart failure.In dealing with acute myocardial infarction,the ...Background Acute myocardial infarction is a common and prevalent cardiovascular disease that can lead to serious consequences such as shock,arrhythmia,and heart failure.In dealing with acute myocardial infarction,the optimization of emergency nursing process can ensure the effectiveness and safety of rescue work,and help improve the prognosis and rehabilitation of patients.Methods 68 cases of patients with acute myocardial infarction admitted to our hospital from August 2021 to March 2023 were selected as the subjects of this study.They were randomly divided into an observation group and a control group,with 34 cases in each group.The control group received routine nursing care,while the observation group received optimized emergency nursing process based on it.the success rates of rescue,emergency efficiency,complications,and hemodynamics were compared between the two groups.ResultsThe success rate of rescue in the observation group was 100.00%,while in the control group it was 88.24%,the success rate of rescue was statistically different between the two groups(P<0.05).The observation group had shorter time intervals from onset to hospital admission,shorter door-to-activation time,shorter door-toballoon time,and reduced length of hospital stay compared to the control group(P<0.05).The total proportion of patients with complications such as arrhythmias in the observation group was 0.00%,while in the control group it was 11.76%,the difference between the two groups was statistically significant(P<0.05).The Cardi-ac output(CO)index of the observation group and the control group is lower than before the nursing intervention,and the observation group is higher than the control group.The Mean arterial pressure(MAP)index of the observation group and the control group is lower than before the nursing intervention,and the observation group is lower than the control group(P<0.05).Conclusions Optimized the emergency nursing process can improve the success rate of rescue and emergency efficiency in patients with acute myocardial infarction,reduce the occurrence of adverse complications,and improve negative emotions such as anxiety.It is worth promoting and applying.展开更多
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
Objective: to study the optimization method of outpatient triage process and its practical application value. Methods: from January, 2020 to December, 2020, 200 outpatients in our hospital were selected as the general...Objective: to study the optimization method of outpatient triage process and its practical application value. Methods: from January, 2020 to December, 2020, 200 outpatients in our hospital were selected as the general group, and the patients were treated by the traditional process. From January, 2021 to December, 2021, 200 outpatients in our hospital were selected as the optimization group, and patients were given process optimization during outpatient treatment, which mainly included optimizing the triage desk environment, rationally allocating triage nurses resources, improving triage nurses communication skills, and constructing information triage process. The triage accuracy rate of two groups of patients was counted, and the registration time, waiting time for auxiliary examination and treatment time of two groups of patients were counted, to investigate the satisfaction of two groups of patients with outpatient triage service and the occurrence of nurse-patient disputes. Results: the accuracy rate of triage in the optimized group was 95%, which was higher than 81% in the general group (P < 0.05). The registration time, waiting time for auxiliary examination and visiting time of patients in the optimized group were shorter than those in the general group (P < 0.05). Patients satisfaction with the rationality of outpatient triage process in the optimized group was 94%, which was higher than that in the general group (76%, P < 0.05). The patients satisfaction with the convenience of outpatient triage process in the optimized group was 96%, which was higher than that in the general group (74%, P < 0.05). There were 10 cases of nurse-patient disputes in the general group, with a nurse-patient dispute rate of 5%, and 1 case in the optimized group, with a nurse-patient dispute rate of 0.5%. The nurse-patient dispute rate in the optimized group was lower than that in the general group (P < 0.05). Conclusion: in outpatient triage service, process optimization through resource integration, strengthening nurse-patient communication, strengthening information construction and optimizing post allocation can effectively improve triage accuracy and patient treatment efficiency, improve patient nursing satisfaction and prevent nurse-patient disputes.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process opt...1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。展开更多
Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–...Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.展开更多
Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s...Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.展开更多
The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilizat...The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.展开更多
Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney c...Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney consolidation,astringency,diuresis,and heat-clearing.In this study,the polyphenolic constituents of D.juglandis and its functional instant tea were investigated in this study.Three polyphenolic compounds were isolated from 70%ethanol extract of D.juglandis Fructus as 2-methoxy juglone,regiolone and quercetin.The HPLC method was established for determination of the content of quercetin in the instant tea samples under the premise that the methodology was verifi ed to meet the standard requirements.The preparation process of D.juglandis Fructus instant tea was optimized through single factor experiments and Box-Behnken design-response surface methodology and the optimal conditions were determined as follows:feed rate of 10 mL/min,inlet temperature of 151℃,andβ-cyclodextrin addition of 9%.Then the antioxidant activity of each sample was evaluated using DPPH and ABTS radical scavenging assays.The results showed that the quercetin had significant antioxidant activity.The instant tea group demonstrated superior antioxidant effects compared to the extracts group at 50,200,and 800μg/mL(P<0.001),likely due to the optimized spray-drying process,which might have enhanced the solubility,stability,and bioavailability of the active compounds.The results provided critical foundational data for the deep processing and comprehensive utilization of D.juglandis Fructus.展开更多
In wire arc additive manufacturing(WAAM),a trade-off exists among deposition efficiency,microstructure,and mechanical properties.Addressing this challenge,this work proposes an innovative multi-objective optimization ...In wire arc additive manufacturing(WAAM),a trade-off exists among deposition efficiency,microstructure,and mechanical properties.Addressing this challenge,this work proposes an innovative multi-objective optimization framework tailored for WAAM of AZ31 magnesium alloy components,which integrates deposition efficiency and microstructure as coupled objectives and is resolved through the NSGA-Ⅱ algorithm.The proposed framework employs quadratic regression to correlate process parameters with deposition efficiency through geometric morphology mediation,while addressing uncertainties in WAAM by integrating theoretical insights with data-driven stacked ensemble learning for grain size prediction,establishing the hybrid physics-informed data method for WAAM microstructure prediction.The optimized process achieved a deposition rate of 6257 mm3/min,with effective width and average layer height maintained at 10.1 mm and 4.13 mm,respectively.Microstructural optimization produced a fine,uniform,fully equiaxed grain structure with an average grain size of 38μm.These findings underscore the significant industrial potential of intelligent optimization strategies in WAAM for manufacturing lightweight,high-performance components in aerospace and transportation sectors.展开更多
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a...High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.展开更多
Machine learning(ML)can optimize the research paradigm and shorten the time from discovery to application of novel functional materials,pharmaceuticals,and fine chemicals.Besides supporting material and drug design,ML...Machine learning(ML)can optimize the research paradigm and shorten the time from discovery to application of novel functional materials,pharmaceuticals,and fine chemicals.Besides supporting material and drug design,ML is a potentially valuable tool for predictive modeling and process optimization.Herein,we first review the recent progress in data-driven ML for molecular crystal design,including property and structure predictions.ML can accelerate the development of the solvates,co-crystals,and colloidal nanocrystals,and improve the efficiency of crystal design.Next,this review summarizes ML algorithms for crystallization behavior prediction and process regulation.ML models support drug solubility prediction,particle agglomeration prediction,and spherical crystal design.ML-based in situ image processing can extract particle information and recognize crystal products.The application scenarios of ML algorithms utilized in crystallization processes and two control strategies based on supersaturation regulation and image processing are also presented.Finally,emerging techniques and the outlook of ML in drug molecular design and industrial crystallization processes are outlined.展开更多
基金funded by the American University of Sharjah.United Arab Emirates award number EN 9502-FRG19-M-E75。
文摘Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.
基金financially supported by the National Key R&D Program of China(No.2021YFB3702301)the National Natural Science Foundation of China(No.52101068]+2 种基金the China Postdoctoral Science Foundation[No.2022T150342]the Postdoctoral International Exchange Program[No.YJ20210129]the Shuimu Tsinghua Scholar Program(No.2020SM100)
文摘Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金financially supported by the Key Project of Research and Development in Yunnan Province(Nos.202103AN080001-002 and 202202AG050007-4)Key Project of Yunnan Fundamental Research(No.202101AS070017)the Kunming University of Science and Technology Analysis and Testing Fund(No.2022M20202230013).
文摘Understanding and clarifying the evolution of microstructure and performance of Al-Zr-Sc alloy wires during processing paths is a crucial issue in developing heat-resistant conductors with high strength and high electrical conductivity(EC).In this study,the microstructure evolution and corresponding performance changes of Al-0.2Zr-0.06Sc alloy wires produced by three processing paths are investigated.Results indicate that ageing treatment+hot extrusion+cold drawing processing path can produce the highest strength Al-Zr-Sc wires attributed to favorable interactions among precipitation strengthening of Al_(3)(Zr,Sc)phases,grain boundary strengthening and dislocation strengthening.High EC is attained by the hot extrusion+ageing treatment+cold drawing processing path,which reveals the importance of dynamic precipitation of Al_(3)Sc phases during hot extrusion and further precipitation of solute atoms during ageing treatment for improving the EC.The processing path using hot extrusion+cold drawing+ageing treatment achieves the highest EC of the Al-Zr-Sc wire,but the strength decreases significantly due to the loss of dislocation strengthening.Additionally,the pinning effect of Al_(3)Sc and Al_(3)(Zr,Sc)ensures good heat resistance of Al-Zr-Sc wires.These results provide guidance for the process design of Al-Zr-Sc wires with variable combinations of strength and EC.
基金the National Natural Science Foundation of China(Grant No.51464035).
文摘The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1).
文摘This paper studies rotor spinning blended yam produced of spun silk and cashmere. Nine samples were spun, from three different opening rollers and different navels. According to the Uster test results of yam quality properties, optimum selection is done by using analysis method of combining fuzzy decision-making and fuzzy pattern classification. Experimental plan is designed based on universal rotated experimental design, and the method of confined optimization is used to optimize the speed of opening roller, the speed of rotor and twist factor, according to the results of yam quality test by Uster.
文摘The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.
文摘Background Acute myocardial infarction is a common and prevalent cardiovascular disease that can lead to serious consequences such as shock,arrhythmia,and heart failure.In dealing with acute myocardial infarction,the optimization of emergency nursing process can ensure the effectiveness and safety of rescue work,and help improve the prognosis and rehabilitation of patients.Methods 68 cases of patients with acute myocardial infarction admitted to our hospital from August 2021 to March 2023 were selected as the subjects of this study.They were randomly divided into an observation group and a control group,with 34 cases in each group.The control group received routine nursing care,while the observation group received optimized emergency nursing process based on it.the success rates of rescue,emergency efficiency,complications,and hemodynamics were compared between the two groups.ResultsThe success rate of rescue in the observation group was 100.00%,while in the control group it was 88.24%,the success rate of rescue was statistically different between the two groups(P<0.05).The observation group had shorter time intervals from onset to hospital admission,shorter door-to-activation time,shorter door-toballoon time,and reduced length of hospital stay compared to the control group(P<0.05).The total proportion of patients with complications such as arrhythmias in the observation group was 0.00%,while in the control group it was 11.76%,the difference between the two groups was statistically significant(P<0.05).The Cardi-ac output(CO)index of the observation group and the control group is lower than before the nursing intervention,and the observation group is higher than the control group.The Mean arterial pressure(MAP)index of the observation group and the control group is lower than before the nursing intervention,and the observation group is lower than the control group(P<0.05).Conclusions Optimized the emergency nursing process can improve the success rate of rescue and emergency efficiency in patients with acute myocardial infarction,reduce the occurrence of adverse complications,and improve negative emotions such as anxiety.It is worth promoting and applying.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
文摘Objective: to study the optimization method of outpatient triage process and its practical application value. Methods: from January, 2020 to December, 2020, 200 outpatients in our hospital were selected as the general group, and the patients were treated by the traditional process. From January, 2021 to December, 2021, 200 outpatients in our hospital were selected as the optimization group, and patients were given process optimization during outpatient treatment, which mainly included optimizing the triage desk environment, rationally allocating triage nurses resources, improving triage nurses communication skills, and constructing information triage process. The triage accuracy rate of two groups of patients was counted, and the registration time, waiting time for auxiliary examination and treatment time of two groups of patients were counted, to investigate the satisfaction of two groups of patients with outpatient triage service and the occurrence of nurse-patient disputes. Results: the accuracy rate of triage in the optimized group was 95%, which was higher than 81% in the general group (P < 0.05). The registration time, waiting time for auxiliary examination and visiting time of patients in the optimized group were shorter than those in the general group (P < 0.05). Patients satisfaction with the rationality of outpatient triage process in the optimized group was 94%, which was higher than that in the general group (76%, P < 0.05). The patients satisfaction with the convenience of outpatient triage process in the optimized group was 96%, which was higher than that in the general group (74%, P < 0.05). There were 10 cases of nurse-patient disputes in the general group, with a nurse-patient dispute rate of 5%, and 1 case in the optimized group, with a nurse-patient dispute rate of 0.5%. The nurse-patient dispute rate in the optimized group was lower than that in the general group (P < 0.05). Conclusion: in outpatient triage service, process optimization through resource integration, strengthening nurse-patient communication, strengthening information construction and optimizing post allocation can effectively improve triage accuracy and patient treatment efficiency, improve patient nursing satisfaction and prevent nurse-patient disputes.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.
基金Yannick Ureel and Maarten Dobbelaere acknowledge financial support from the Fund for Scientific Research Flanders(FWO Flanders)respectively through doctoral fellowship grants(1185822N and 1S45522N)The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme/ERC(818607).
文摘1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。
文摘Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.
文摘Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.
基金Supported by the Funds from Central Government for Guiding Local Science and Technology Development(ZY20230102)Planning Project of Scientific Research and Technology Development in Guilin(20220104-4,20210202-1)Science and Technology Planing Project of Guangxi(Guike AB24010263).
文摘The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.
文摘Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney consolidation,astringency,diuresis,and heat-clearing.In this study,the polyphenolic constituents of D.juglandis and its functional instant tea were investigated in this study.Three polyphenolic compounds were isolated from 70%ethanol extract of D.juglandis Fructus as 2-methoxy juglone,regiolone and quercetin.The HPLC method was established for determination of the content of quercetin in the instant tea samples under the premise that the methodology was verifi ed to meet the standard requirements.The preparation process of D.juglandis Fructus instant tea was optimized through single factor experiments and Box-Behnken design-response surface methodology and the optimal conditions were determined as follows:feed rate of 10 mL/min,inlet temperature of 151℃,andβ-cyclodextrin addition of 9%.Then the antioxidant activity of each sample was evaluated using DPPH and ABTS radical scavenging assays.The results showed that the quercetin had significant antioxidant activity.The instant tea group demonstrated superior antioxidant effects compared to the extracts group at 50,200,and 800μg/mL(P<0.001),likely due to the optimized spray-drying process,which might have enhanced the solubility,stability,and bioavailability of the active compounds.The results provided critical foundational data for the deep processing and comprehensive utilization of D.juglandis Fructus.
基金supported by the National Natural Science Foundation of China(Nos.52475317 and 52305331).
文摘In wire arc additive manufacturing(WAAM),a trade-off exists among deposition efficiency,microstructure,and mechanical properties.Addressing this challenge,this work proposes an innovative multi-objective optimization framework tailored for WAAM of AZ31 magnesium alloy components,which integrates deposition efficiency and microstructure as coupled objectives and is resolved through the NSGA-Ⅱ algorithm.The proposed framework employs quadratic regression to correlate process parameters with deposition efficiency through geometric morphology mediation,while addressing uncertainties in WAAM by integrating theoretical insights with data-driven stacked ensemble learning for grain size prediction,establishing the hybrid physics-informed data method for WAAM microstructure prediction.The optimized process achieved a deposition rate of 6257 mm3/min,with effective width and average layer height maintained at 10.1 mm and 4.13 mm,respectively.Microstructural optimization produced a fine,uniform,fully equiaxed grain structure with an average grain size of 38μm.These findings underscore the significant industrial potential of intelligent optimization strategies in WAAM for manufacturing lightweight,high-performance components in aerospace and transportation sectors.
基金supported by the National Key Research and Development Program of China(No.2020YFC1908702)the National Natural Science Foundation of China(No.52131002)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22dz1209200)China Three Gorges Corporation(No.202403018).
文摘High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
基金financially supported by the National Natural Science Foundation of China(22008173,21938009,and 21676179)the Major Key Technology Project of ShandongProvincial Key Research and Development Program(2021CXGC010514)the support of the China Scholarship Council。
文摘Machine learning(ML)can optimize the research paradigm and shorten the time from discovery to application of novel functional materials,pharmaceuticals,and fine chemicals.Besides supporting material and drug design,ML is a potentially valuable tool for predictive modeling and process optimization.Herein,we first review the recent progress in data-driven ML for molecular crystal design,including property and structure predictions.ML can accelerate the development of the solvates,co-crystals,and colloidal nanocrystals,and improve the efficiency of crystal design.Next,this review summarizes ML algorithms for crystallization behavior prediction and process regulation.ML models support drug solubility prediction,particle agglomeration prediction,and spherical crystal design.ML-based in situ image processing can extract particle information and recognize crystal products.The application scenarios of ML algorithms utilized in crystallization processes and two control strategies based on supersaturation regulation and image processing are also presented.Finally,emerging techniques and the outlook of ML in drug molecular design and industrial crystallization processes are outlined.