In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integra...In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.展开更多
With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage...With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.展开更多
As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of...As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method.展开更多
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout...An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.展开更多
Hydrogen energy is a crucial support for China’s low-carbon energy transition.With the large-scale integration of renewable energy,the combination of hydrogen and integrated energy systems has become one of the most ...Hydrogen energy is a crucial support for China’s low-carbon energy transition.With the large-scale integration of renewable energy,the combination of hydrogen and integrated energy systems has become one of the most promising directions of development.This paper proposes an optimized schedulingmodel for a hydrogen-coupled electro-heat-gas integrated energy system(HCEHG-IES)using generative adversarial imitation learning(GAIL).The model aims to enhance renewable-energy absorption,reduce carbon emissions,and improve grid-regulation flexibility.First,the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process(MDP).To overcome the limitations of conventional deep reinforcement learning algorithms—including long optimization time,slow convergence,and subjective reward design—this study augments the PPO algorithm by incorporating a discriminator network and expert data.The newly developed algorithm,termed GAIL,enables the agent to perform imitation learning from expert data.Based on this model,dynamic scheduling decisions are made in continuous state and action spaces,generating optimal energy-allocation and management schemes.Simulation results indicate that,compared with traditional reinforcement-learning algorithms,the proposed algorithmoffers better economic performance.Guided by expert data,the agent avoids blind optimization,shortens the offline training time,and improves convergence performance.In the online phase,the algorithm enables flexible energy utilization,thereby promoting renewable-energy absorption and reducing carbon emissions.展开更多
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an...As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t...To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model...This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.展开更多
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys...In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into considerat...In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.展开更多
The optimal dispatch of energy storage systems(ESSs)in distribution networks poses significant challenges,primarily due to uncertainties of dynamic pricing,fluctuating demand,and the variability inherent in renewable ...The optimal dispatch of energy storage systems(ESSs)in distribution networks poses significant challenges,primarily due to uncertainties of dynamic pricing,fluctuating demand,and the variability inherent in renewable energy sources.By exploiting the generalization capabilities of deep neural networks(DNNs),the deep reinforcement learning(DRL)algorithms can learn good-quality control models that adapt to the stochastic nature of distribution networks.Nevertheless,the practical deployment of DRL algorithms is often hampered by their limited capacity for satisfying operational constraints in real time,which is a crucial requirement for ensuring the reliability and feasibility of control actions during online operations.This paper introduces an innovative framework,named mixed-integer programming based deep reinforcement learning(MIP-DRL),to overcome these limitations.The proposed MIP-DRL framework can rigorously enforce operational constraints for the optimal dispatch of ESSs during the online execution.This framework involves training a Q-function with DNNs,which is subsequently represented in a mixed-integer programming(MIP)formulation.This unique combination allows for the seamless integration of operational constraints into the decision-making process.The effectiveness of the proposed MIP-DRL framework is validated through numerical simulations,demonstrating its superior capability to enforce all operational constraints and achieve high-quality dispatch decisions and showing its advantage over existing DRL algorithms.展开更多
Proton exchange membrane(PEM)electrolyzer(EL)is regarded as a promising technology for hydrogen generation,offering load flexibility for electric grids(EGs),especially those with a high penetration of renewable energy...Proton exchange membrane(PEM)electrolyzer(EL)is regarded as a promising technology for hydrogen generation,offering load flexibility for electric grids(EGs),especially those with a high penetration of renewable energy(RE)sources.This paper proposes a PEM-focused economic dispatch strategy for EG integrated with wind-electrolysis systems.Existing strategies commonly assume a constant efficiency coefficient to model the EL,while the proposed strategy incorporates a bottom-up PEM EL model characterized by a part-load efficiency curve,which accurately represents the nonlinear hydrogen production performance,capturing efficiency variations at different loads.To model this,it first establishes a 0D electrochemical model to derive the polarization curve.Next,it accounts for the hydrogen and oxygen crossover phenomena,represented by the Faraday efficiency,to correct the stack efficiency curve.Finally,it includes the power consumption of ancillary equipment to obtain the nonlinear part-load system efficiency.This strategy is validated using the PJM-5 bus test system with coal-fired generators(CFGs)and is compared with a simple EL model using constant efficiency under three scenarios.The results show that the EL modeling method significantly influences both the dispatch outcome and the economic performance.Sensitivity analyses on coal and hydrogen prices indicate that,for this case study,the proposed strategy is economically advantageous when the coal price is below 121.6$/tonne.Additionally,the difference in total annual operating cost between using the efficiency curve anda constant efficiency to model becomes apparent when the hydrogen price ranges from 2.9 to 5.4$/kg.展开更多
Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the powe...Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the power dispatch of ADNs and P2P energy trading while preserving the privacy of different physical interests.Hence,this paper proposes a soft actor-critic algorithm incorporating distributed trading control(SAC-DTC)to tackle the optimal power dispatch of ADNs and the P2P energy trading considering privacy preservation among prosumers.First,the soft actor-critic(SAC)algorithm is used to optimize the control strategy of device in ADNs to minimize the operation cost,and the primary environmental information of the ADN at this point is published to prosumers.Then,a distributed generalized fast dual ascent method is used to iterate the trading process of prosumers and maximize their revenues.Subsequently,the results of trading are encrypted based on the differential privacy technique and returned to the ADN.Finally,the social welfare value consisting of ADN operation cost and P2P market revenue is utilized as a reward value to update network parameters and control strategies of the deep reinforcement learning.Simulation results show that the proposed SAC-DTC algorithm reduces the ADN operation cost,boosts the P2P market revenue,maximizes the social welfare,and exhibits high computational accuracy,demonstrating its practical application to the operation of power systems and power markets.展开更多
Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems.Those foundation models are typically trained in a prediction-focused manner to ma...Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems.Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality.In contrast,decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality.The practical integration of forecast values into forecasting models is challenging,particularly when addressing complex applications with diverse instances,such as buildings.This becomes even more complicated when instances possess specific characteristics that require instance-specific,tailored predictions to increase the forecast value.To tackle this challenge,we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem.To obtain more robust predictions for scarce building data,we use Moirai as a state-of-the-art foundation model,which offers robust and generalized results with few-shot parameter-efficient fine-tuning.Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Moirai,we observe an improvement of 9.45%in Average Daily Total Costs.展开更多
文摘In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.
基金supported in part by the National Natural Science Foundation of China (No.U2166202)S&T Program of Hebei (No.20312102D)。
文摘With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.
基金supported by the National Natural Science Foundation of China(No.51507080)the Science and Technology Project of State Grid Corporation of China(5228001600DT)
文摘As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method.
基金The National Natural Science Foundation of China(No.71101025)the Science and Technology Key Plan Project of Changzhou(No.CE20125001)
文摘An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.
基金supported by State Grid Corporation Technology Project(No.522437250003).
文摘Hydrogen energy is a crucial support for China’s low-carbon energy transition.With the large-scale integration of renewable energy,the combination of hydrogen and integrated energy systems has become one of the most promising directions of development.This paper proposes an optimized schedulingmodel for a hydrogen-coupled electro-heat-gas integrated energy system(HCEHG-IES)using generative adversarial imitation learning(GAIL).The model aims to enhance renewable-energy absorption,reduce carbon emissions,and improve grid-regulation flexibility.First,the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process(MDP).To overcome the limitations of conventional deep reinforcement learning algorithms—including long optimization time,slow convergence,and subjective reward design—this study augments the PPO algorithm by incorporating a discriminator network and expert data.The newly developed algorithm,termed GAIL,enables the agent to perform imitation learning from expert data.Based on this model,dynamic scheduling decisions are made in continuous state and action spaces,generating optimal energy-allocation and management schemes.Simulation results indicate that,compared with traditional reinforcement-learning algorithms,the proposed algorithmoffers better economic performance.Guided by expert data,the agent avoids blind optimization,shortens the offline training time,and improves convergence performance.In the online phase,the algorithm enables flexible energy utilization,thereby promoting renewable-energy absorption and reducing carbon emissions.
基金supported by the National Natural Science Foundation of China under Grant 62473328by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金supported by Science and Technology Project of State Grid Hebei Electric Power Company(SGHE0000DKJS2000228)
文摘To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.
基金This work has been partly funded by the National Natural Science Foundation of China(No.50078048).
文摘This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.
基金supported by Science and Technology Project of SGCC(5108-202218280A-2-375-XG)。
文摘In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
文摘In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.
基金supported by the DATALESs project(No.482.20.602)jointly financed by the Netherlands Organization for Scientific Research(NWO)and the National Natural Science Foundation of China.
文摘The optimal dispatch of energy storage systems(ESSs)in distribution networks poses significant challenges,primarily due to uncertainties of dynamic pricing,fluctuating demand,and the variability inherent in renewable energy sources.By exploiting the generalization capabilities of deep neural networks(DNNs),the deep reinforcement learning(DRL)algorithms can learn good-quality control models that adapt to the stochastic nature of distribution networks.Nevertheless,the practical deployment of DRL algorithms is often hampered by their limited capacity for satisfying operational constraints in real time,which is a crucial requirement for ensuring the reliability and feasibility of control actions during online operations.This paper introduces an innovative framework,named mixed-integer programming based deep reinforcement learning(MIP-DRL),to overcome these limitations.The proposed MIP-DRL framework can rigorously enforce operational constraints for the optimal dispatch of ESSs during the online execution.This framework involves training a Q-function with DNNs,which is subsequently represented in a mixed-integer programming(MIP)formulation.This unique combination allows for the seamless integration of operational constraints into the decision-making process.The effectiveness of the proposed MIP-DRL framework is validated through numerical simulations,demonstrating its superior capability to enforce all operational constraints and achieve high-quality dispatch decisions and showing its advantage over existing DRL algorithms.
基金supported by National Key R&D Program of China(Grant No.2021YFE0191200)which has received funding from Ministry of Science and Technology of the People’s Republic of China.
文摘Proton exchange membrane(PEM)electrolyzer(EL)is regarded as a promising technology for hydrogen generation,offering load flexibility for electric grids(EGs),especially those with a high penetration of renewable energy(RE)sources.This paper proposes a PEM-focused economic dispatch strategy for EG integrated with wind-electrolysis systems.Existing strategies commonly assume a constant efficiency coefficient to model the EL,while the proposed strategy incorporates a bottom-up PEM EL model characterized by a part-load efficiency curve,which accurately represents the nonlinear hydrogen production performance,capturing efficiency variations at different loads.To model this,it first establishes a 0D electrochemical model to derive the polarization curve.Next,it accounts for the hydrogen and oxygen crossover phenomena,represented by the Faraday efficiency,to correct the stack efficiency curve.Finally,it includes the power consumption of ancillary equipment to obtain the nonlinear part-load system efficiency.This strategy is validated using the PJM-5 bus test system with coal-fired generators(CFGs)and is compared with a simple EL model using constant efficiency under three scenarios.The results show that the EL modeling method significantly influences both the dispatch outcome and the economic performance.Sensitivity analyses on coal and hydrogen prices indicate that,for this case study,the proposed strategy is economically advantageous when the coal price is below 121.6$/tonne.Additionally,the difference in total annual operating cost between using the efficiency curve anda constant efficiency to model becomes apparent when the hydrogen price ranges from 2.9 to 5.4$/kg.
基金supported by the National Natural Science Foundation of China(No.52177085).
文摘Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the power dispatch of ADNs and P2P energy trading while preserving the privacy of different physical interests.Hence,this paper proposes a soft actor-critic algorithm incorporating distributed trading control(SAC-DTC)to tackle the optimal power dispatch of ADNs and the P2P energy trading considering privacy preservation among prosumers.First,the soft actor-critic(SAC)algorithm is used to optimize the control strategy of device in ADNs to minimize the operation cost,and the primary environmental information of the ADN at this point is published to prosumers.Then,a distributed generalized fast dual ascent method is used to iterate the trading process of prosumers and maximize their revenues.Subsequently,the results of trading are encrypted based on the differential privacy technique and returned to the ADN.Finally,the social welfare value consisting of ADN operation cost and P2P market revenue is utilized as a reward value to update network parameters and control strategies of the deep reinforcement learning.Simulation results show that the proposed SAC-DTC algorithm reduces the ADN operation cost,boosts the P2P market revenue,maximizes the social welfare,and exhibits high computational accuracy,demonstrating its practical application to the operation of power systems and power markets.
基金funded by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI,the Helmholtz Association under the Program“Energy System Design”the German Research Foundation(DFG)as part of the Research Training Group 2153“En-ergy Status Data:Informatics Methods for its Collection,Analysis and Exploitation”+1 种基金supported by the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT partitionsupport by the KIT-Publication Fund of the Karlsruhe Institute of Technology.
文摘Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems.Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality.In contrast,decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality.The practical integration of forecast values into forecasting models is challenging,particularly when addressing complex applications with diverse instances,such as buildings.This becomes even more complicated when instances possess specific characteristics that require instance-specific,tailored predictions to increase the forecast value.To tackle this challenge,we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem.To obtain more robust predictions for scarce building data,we use Moirai as a state-of-the-art foundation model,which offers robust and generalized results with few-shot parameter-efficient fine-tuning.Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Moirai,we observe an improvement of 9.45%in Average Daily Total Costs.