Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters ...Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall...In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro...This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pr...A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.展开更多
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile...The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul...Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.展开更多
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金National Natural Science Foundation of China,Grant/Award Number:52374153。
文摘Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金the support of EPIC - Energy Production Innovation Center, hosted by the University of Campinas (UNICAMP) and sponsored by Equinor Brazil and FAPESP - Sao Paulo Research Foundation (2021/04878- 7 and 2017/15736-3)financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior Brasil (CAPES) - Financing Code 001
文摘In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
文摘This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金supported by the National Natural Science Foundation of China(No.52175067)the Zhejiang Key Research&Development Project(No.2021C01021)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY20E050016)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZC20241478)。
文摘A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.
基金supported in part by the Six Talent Peaks Project in Jiangsu Province under Grant 013040315in part by the China Textile Industry Federation Science and Technology Guidance Project under Grant 2017107+1 种基金in part by the National Natural Science Foundation of China under Grant 31570714in part by the China Scholarship Council under Grant 202108320290。
文摘The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金upported by the National Natural Science Foundation of China(Grant No.62305184)the Major Key Project of Pengcheng Laboratory(Grant No.PCL2024A1)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2023A1515012932)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.WDZC20220818100259004).
文摘Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.