Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring...Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.展开更多
This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task...This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task allocation for vigilance roles and the coverage planning of the perception ranges.Firstly,vigilance behavioral patterns and processes in animal populations within natural habitats are investigated.Inspired by these biological vigilance behaviors,an efficient vigilance task allocation model for MAS is proposed.Secondly,the subsequent optimization of task layouts can achieve efficient surveillance coverage with fewer agents,minimizing resource consumption.Thirdly,an improved particle swarm optimization(IPSO)algorithm is proposed,which incorporates fitness-driven adaptive inertia weight dynamics.According to simulation analysis and comparative studies,optimal parameter configurations for genetic algorithm(GA)and IPSO are determined.Finally,the results indicate the proposed IPSO's superior performance to both GA and standard particle swarm optimization(PSO)in vigilance task allocation optimization,with satisfying advantages in computational efficiency and solution quality.展开更多
Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing...Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing attention on specific properties of adopted numerical optimization approaches.We collect and discuss the methods based on nonlinear programming,semidefinite programming,mixed-integer programming,mathematical programming with complementarity constraints,difference-of-convex programming,optimization methods using surrogate models and machine learning techniques,and metaheuristics.As a closely related topic,we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling.We conclude the paper by drawing several remarks through this review.展开更多
Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ...Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.展开更多
Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process...Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ...Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.展开更多
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ...Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ...With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system.展开更多
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio...With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable deve...The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.展开更多
As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learnin...With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.展开更多
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of...The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.展开更多
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金supporteded by Natural Science Foundation of Shanghai(Grant No.22ZR1463900)State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202318)the Fundamental Research Funds for the Central Universities(Grant No.22120220649).
文摘Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.
基金The National Natural Science Foundation of China(62203015,62233001,62273351)The Beijing Natural Science Foundation(4242038)。
文摘This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task allocation for vigilance roles and the coverage planning of the perception ranges.Firstly,vigilance behavioral patterns and processes in animal populations within natural habitats are investigated.Inspired by these biological vigilance behaviors,an efficient vigilance task allocation model for MAS is proposed.Secondly,the subsequent optimization of task layouts can achieve efficient surveillance coverage with fewer agents,minimizing resource consumption.Thirdly,an improved particle swarm optimization(IPSO)algorithm is proposed,which incorporates fitness-driven adaptive inertia weight dynamics.According to simulation analysis and comparative studies,optimal parameter configurations for genetic algorithm(GA)and IPSO are determined.Finally,the results indicate the proposed IPSO's superior performance to both GA and standard particle swarm optimization(PSO)in vigilance task allocation optimization,with satisfying advantages in computational efficiency and solution quality.
文摘Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing attention on specific properties of adopted numerical optimization approaches.We collect and discuss the methods based on nonlinear programming,semidefinite programming,mixed-integer programming,mathematical programming with complementarity constraints,difference-of-convex programming,optimization methods using surrogate models and machine learning techniques,and metaheuristics.As a closely related topic,we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling.We conclude the paper by drawing several remarks through this review.
基金supported by the National Natural Science Foundation of China(Grant Nos.52425211,52272360,and 52472394)Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0300)。
文摘Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.
基金the financial supports provided by the National Key Research and Development Program of China(2023YFE0201500)the National Natural Science Foundation of China(52375315)+2 种基金the Key Talent Plan Project of Guangdong Province(2023TQ07C702)the Research and Development Program in Key Areas of Dongguan(20201200300122)the GDAS’Project of Science and Technology Development(2022GDASZH-2022010203).
文摘Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3707803)the National Natural Science Foundation of China(Grant Nos.12072179 and 11672168)+1 种基金the Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Shanghai Engineering Research Center for Inte-grated Circuits and Advanced Display Materials.
文摘Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.
文摘Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金funded by Jilin Province Science and Technology Development Plan Project,grant number 20220203163SF.
文摘With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system.
文摘With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金supported by the National Natural Science Foundation of China (Grant No.52174065)the National Natural Science Foundation of China (Grant No.52304071)+1 种基金China University of Petroleum,Beijing (Grant No.ZX20220040)MOE Key Laboratory of Petroleum Engineering (China University of Petroleum,No.2462024PTJS002)。
文摘The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
文摘With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.
基金funded by the National Key Research and Development Program of China(2024YFE0106800)Natural Science Foundation of Shandong Province(ZR2021ME199).
文摘The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.