This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n...This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.展开更多
Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the...Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resour...Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis.展开更多
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic...The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.展开更多
Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrai...Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.展开更多
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme...Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2))...Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.展开更多
Ti(C,N)-Mo_(2)C-Ni cermet as alternative materials was explored for use in alkaline conditions,replacing the WC-Co cemented carbides,since Co is classified as a potentially carcinogenic substance and there is potentia...Ti(C,N)-Mo_(2)C-Ni cermet as alternative materials was explored for use in alkaline conditions,replacing the WC-Co cemented carbides,since Co is classified as a potentially carcinogenic substance and there is potential hazard of“hard metal disease”under the exposure to cobalt dust.The changes in microstructure,corrosion rate and volumetric loss rate of the two materials were compared under electrochemical corrosion and erosion-corrosion in alkaline environment.The results demonstrates that Ti(C,N)-Mo_(2)C-Ni cermet undergoes passivation when exposed to electrochemical corrosion of NaOH solution,resulting in a significant increase in oxygen content on the corroded surface.The corrosion rate of cermet is approximately one order of magnitude lower than that of the cemented carbide.Under the erosion-corrosion of an alkaline sand-water mixture,both the cermet and cemented carbide experience a gradual increase in volumetric loss rate with prolonging the erosion time.During erosion,the rim phase in cermet is fragile,so cracks easily penetrate it while the core phase remains intact.The medium-grained cemented carbide commonly demonstrates transgranular fracture mode,while in the fine-grained cemented carbide,cracks tend to propagate along phase boundaries.The erosive wear and damage caused by sand particles play a predominant role in the erosion-corrosion process of alkaline sand-water mixtures.This process represents an accelerated destructive phenomenon influenced and intensified by the combined effects of corrosion and erosion.It is confirmed that using cermet as an alternative anti-wear material to cemented carbides is feasible under alkaline conditions,and even better.展开更多
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an...As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.展开更多
ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The m...ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.展开更多
In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress fi...In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress field of rock bodies can induce substantial deviations and limitations.This study focuses on a typical karst area in Southwest Guizhou,China as its research background.It employs a hybrid approach integrating machine learning,numerical simulations,and field experiments to develop an optimization algorithm for nonlinear prediction of the complex three-dimensional(3D)in situ stress fields.Through collecting and fitting analysis of in situ stress measurement data from the karst region,the distributions of in situ stresses with depth were identified with nonlinear boundary conditions.A prediction model for in situ stress was then established based on artificial neural network(ANN)and genetic algorithm(GA)approach,validated in the typical karst landscape mine,Jinfeng Gold Mine.The results demonstrate that the model's predictions align well with actual measurements,showcasing consistency and regularity.Specifically,the error between the predicted and actual values of the maximum horizontal principal stress was the smallest,with an absolute error 0.01-3 MPa and a relative error of 0.04-15.31%.This model accurately and effectively predicts in situ stresses in complex geological areas.展开更多
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the...The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of...The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.展开更多
Weather variations present a major challenge for photovoltaic(PV)systems in obtaining the optimal output during maximum power point tracking(MPPT),particularly under partial shadowing conditions(PSCs).Bypass diodes ar...Weather variations present a major challenge for photovoltaic(PV)systems in obtaining the optimal output during maximum power point tracking(MPPT),particularly under partial shadowing conditions(PSCs).Bypass diodes are typically installed across the series-connected PV modules to avoid the occurrence of the hotspots.Consequently,the power curve exhibits several local peaks(LPs)and one global peak(GP).The conventional MPPTs typically become stuck in one of these LPs,presenting a significant decrease in both the power output and overall efficiency of the PV system.A major constraint of several optimization techniques is their inability to differ-entiate between the irradiancefluctuations and load alterations.In this study,we analyze seven different methods for MPPT.These include:the team game algorithm(TGA),social ki driver algorithm(SSD),differential evolution(DE),grey wolf optimization(GWO),particle swarm optimization(PSO),cuckoo search(CS),and the perturb and observe(P&O)method.These algorithms were applied in practice,and their effectiveness was experimentally demonstrated under different amounts of solar irradiation while maintain-ing a constant temperature.The results indicate that the CS and TGA approaches can accurately track the MPPT across various posi-tions on the P-V curve.These methods achieve average efficiencies of 99.59%and 99.54%,respectively.Additionally,the TGA achieves superior performance with the shortest average tracking time of 0.92 s,outperforming the existing MPPT algorithms.展开更多
The growing importance of maintaining and extending the functional lifespan of reinforced concrete structures has resulted in an increased emphasis on non-destructive testing techniques as essential tools for evaluati...The growing importance of maintaining and extending the functional lifespan of reinforced concrete structures has resulted in an increased emphasis on non-destructive testing techniques as essential tools for evaluating structural conditions.Non-destructive testing procedures offer a notable benefit in assessing the uniformity,homogeneity,ability to withstand compression,durability,and degree of corrosion in reinforcing bars within reinforced concrete structures.This study aimed to evaluate the existing condition of partially constructed residential buildings in Rewari district,located in the state of Haryana.The reinforced concrete structure of the building had been completed eight years ago,however,the project was abruptly stopped.Prior to recommencing the construction,it is important to assess the present state of the structure in order to evaluate the deterioration in Reinforced Cement Concrete(RCC).The building’s state was evaluated by visually inspecting the building,conducting on-site examinations,and analyzing samples in a laboratory.The findings emphasize the assessment of the robustness and durability of concrete to ascertain the degree of deterioration and degradation in the structure.The study incorporates visual inspection,and non-destructive evaluation utilizing different instruments to evaluate the corrosion condition of reinforcing bars.In addition,selected RCC columns,beams,and slabs undergo chemical testing.It has been observed that the strength results and chemical results were within permissible limits.展开更多
文摘This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.
基金Supported by the National Key R&D Program of China(No.2023YFA1011100)NSFC(No.12131004)。
文摘Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.
基金funded by the KRICT Project (KK2512-10) of the Korea Research Institute of Chemical Technology and the Ministry of Trade, Industry and Energy (MOTIE)the Korea Institute for Advancement of Technology (KIAT) through the Virtual Engineering Platform Program (P0022334)+1 种基金supported by the Carbon Neutral Industrial Strategic Technology Development Program (RS-202300261088) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)Further support was provided by research fund of Chungnam National University。
文摘Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis.
基金supported by the National Natural Science Foundation of China (Grant No. 42288101, 42375062, 42476192, 42275158)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)the GHfund C (202407036001)
文摘The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.
文摘Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.
基金supported by the National Natural Science Foundation of China (22379038)Science Research Project of Hebei Education Department (JZX2024015)+4 种基金Shijiazhuang Science and Technology Plan Project (241791357A)Central Guidance for Local Science and Technology Development Funds Project (246Z4408G)Excellent Youth Research Innovation Team of Hebei University (QNTD202410)High-level Talents Research Start-Up Project of Hebei University (521100224223)Hebei Province Innovation Capability Enhancement Plan Project (22567620H)。
文摘Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
基金supported by the Talent Fund of Beijing Jiaotong University(No.2020RC012)NSFC(No.11871295),supported by NSFC(No.11971476),supported by NSFC(No.12071421)。
文摘Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.
基金Chongqing Light Alloy Materials and Processing Engineering Technology Research Center Open Fund Project(GCZX201903)Yunnan Province Major Science and Technology Special Project Plan(202302AA310038)Sichuan University-Suining Municipal-University Cooperation Project(2023CDSN-12)。
文摘Ti(C,N)-Mo_(2)C-Ni cermet as alternative materials was explored for use in alkaline conditions,replacing the WC-Co cemented carbides,since Co is classified as a potentially carcinogenic substance and there is potential hazard of“hard metal disease”under the exposure to cobalt dust.The changes in microstructure,corrosion rate and volumetric loss rate of the two materials were compared under electrochemical corrosion and erosion-corrosion in alkaline environment.The results demonstrates that Ti(C,N)-Mo_(2)C-Ni cermet undergoes passivation when exposed to electrochemical corrosion of NaOH solution,resulting in a significant increase in oxygen content on the corroded surface.The corrosion rate of cermet is approximately one order of magnitude lower than that of the cemented carbide.Under the erosion-corrosion of an alkaline sand-water mixture,both the cermet and cemented carbide experience a gradual increase in volumetric loss rate with prolonging the erosion time.During erosion,the rim phase in cermet is fragile,so cracks easily penetrate it while the core phase remains intact.The medium-grained cemented carbide commonly demonstrates transgranular fracture mode,while in the fine-grained cemented carbide,cracks tend to propagate along phase boundaries.The erosive wear and damage caused by sand particles play a predominant role in the erosion-corrosion process of alkaline sand-water mixtures.This process represents an accelerated destructive phenomenon influenced and intensified by the combined effects of corrosion and erosion.It is confirmed that using cermet as an alternative anti-wear material to cemented carbides is feasible under alkaline conditions,and even better.
基金supported by the National Natural Science Foundation of China under Grant 62473328by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.
文摘ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
基金financially supported by the National Natural Science Foundation of China(Grant No.52374118)the Science and Technology Support Project of Guizhou Province,China(Project Grant No.Qiankehe Support(2022)General 247).
文摘In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress field of rock bodies can induce substantial deviations and limitations.This study focuses on a typical karst area in Southwest Guizhou,China as its research background.It employs a hybrid approach integrating machine learning,numerical simulations,and field experiments to develop an optimization algorithm for nonlinear prediction of the complex three-dimensional(3D)in situ stress fields.Through collecting and fitting analysis of in situ stress measurement data from the karst region,the distributions of in situ stresses with depth were identified with nonlinear boundary conditions.A prediction model for in situ stress was then established based on artificial neural network(ANN)and genetic algorithm(GA)approach,validated in the typical karst landscape mine,Jinfeng Gold Mine.The results demonstrate that the model's predictions align well with actual measurements,showcasing consistency and regularity.Specifically,the error between the predicted and actual values of the maximum horizontal principal stress was the smallest,with an absolute error 0.01-3 MPa and a relative error of 0.04-15.31%.This model accurately and effectively predicts in situ stresses in complex geological areas.
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
文摘The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.
基金supported by the Ministry of Higher Education(MOHE)of Malaysia through a research grant FRGS/1/2023/TK08/UNITEN/02/9.
文摘Weather variations present a major challenge for photovoltaic(PV)systems in obtaining the optimal output during maximum power point tracking(MPPT),particularly under partial shadowing conditions(PSCs).Bypass diodes are typically installed across the series-connected PV modules to avoid the occurrence of the hotspots.Consequently,the power curve exhibits several local peaks(LPs)and one global peak(GP).The conventional MPPTs typically become stuck in one of these LPs,presenting a significant decrease in both the power output and overall efficiency of the PV system.A major constraint of several optimization techniques is their inability to differ-entiate between the irradiancefluctuations and load alterations.In this study,we analyze seven different methods for MPPT.These include:the team game algorithm(TGA),social ki driver algorithm(SSD),differential evolution(DE),grey wolf optimization(GWO),particle swarm optimization(PSO),cuckoo search(CS),and the perturb and observe(P&O)method.These algorithms were applied in practice,and their effectiveness was experimentally demonstrated under different amounts of solar irradiation while maintain-ing a constant temperature.The results indicate that the CS and TGA approaches can accurately track the MPPT across various posi-tions on the P-V curve.These methods achieve average efficiencies of 99.59%and 99.54%,respectively.Additionally,the TGA achieves superior performance with the shortest average tracking time of 0.92 s,outperforming the existing MPPT algorithms.
文摘The growing importance of maintaining and extending the functional lifespan of reinforced concrete structures has resulted in an increased emphasis on non-destructive testing techniques as essential tools for evaluating structural conditions.Non-destructive testing procedures offer a notable benefit in assessing the uniformity,homogeneity,ability to withstand compression,durability,and degree of corrosion in reinforcing bars within reinforced concrete structures.This study aimed to evaluate the existing condition of partially constructed residential buildings in Rewari district,located in the state of Haryana.The reinforced concrete structure of the building had been completed eight years ago,however,the project was abruptly stopped.Prior to recommencing the construction,it is important to assess the present state of the structure in order to evaluate the deterioration in Reinforced Cement Concrete(RCC).The building’s state was evaluated by visually inspecting the building,conducting on-site examinations,and analyzing samples in a laboratory.The findings emphasize the assessment of the robustness and durability of concrete to ascertain the degree of deterioration and degradation in the structure.The study incorporates visual inspection,and non-destructive evaluation utilizing different instruments to evaluate the corrosion condition of reinforcing bars.In addition,selected RCC columns,beams,and slabs undergo chemical testing.It has been observed that the strength results and chemical results were within permissible limits.