期刊文献+
共找到1,090篇文章
< 1 2 55 >
每页显示 20 50 100
Bayesian optimized support vector regression with a Gaussian kernel for accurate prediction of the state of health of lithium-ion batteries used for electric vehicle applications
1
作者 Selvaraj Vedhanayaki Vairavasundaram Indragandhi 《Global Energy Interconnection》 2025年第5期891-904,共14页
The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a... The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a Gaussian kernel optimized using the Bayesian optimization technique(BO-SVR with a Gaussian kernel)was proposed.Unlike,traditional approaches that use the internal resistance,and battery capacity as input parameters,this study utilized the equivalent discharging voltage difference interval and equivalent charging voltage difference interval,as they capture the dynamic voltage characteristics associated with the battery degradation.The model was simulated using MATLAB 2023a.The mean absolute error,R^(2),root mean squared error,and mean squared error were considered as performance indicators.The simulation results indicated that the proposed BO-SVR with a Gaussian kernel model had superior performance to other kernel SVR and Gaussian Process Regression models,with a reduced RMSE of 0.0082,thus demonstrating its potential to predict the SoH more accurately. 展开更多
关键词 Lithium-ion batteries State of health Machine learning algorithms Bayesian optimization kernel function
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
2
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Data-Based Optimal Bandwidth for Kernel Density Estimation of Statistical Samples 被引量:3
3
作者 Zhen-Wei Li Ping He 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第12期728-734,共7页
It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth o... It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth of kernel estimation, which is completely based on data samples, is a long-term issue that has not been well settled so far. There exist analytic formulae of optimal kernel bandwidth, but they cannot be applied directly to data samples,since they depend on the unknown underlying density functions from which the samples are drawn. In this work, we devise an approach to pick out the totally data-based optimal bandwidth. First, we derive correction formulae for the analytic formulae of optimal bandwidth to compute the roughness of the sample's density function. Then substitute the correction formulae into the analytic formulae for optimal bandwidth, and through iteration we obtain the sample's optimal bandwidth. Compared with analytic formulae, our approach gives very good results, with relative differences from the analytic formulae being only 2%~3% for sample size larger than 10~4. This approach can also be generalized easily to cases of variable kernel estimations. 展开更多
关键词 numerical methods kernel density estimation optimal BANDWIDTH large-scale structure of UNIVERSE
原文传递
The Optimal Matching Parameter of Half Discrete Hilbert Type Multiple Integral Inequalities with Non-Homogeneous Kernels and Applications
4
作者 HONG Yong HE Bing 《Chinese Quarterly Journal of Mathematics》 2021年第3期252-262,共11页
By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent ... By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered. 展开更多
关键词 Non-homogeneous kernel Half discrete Hilbert type multiple integral in-equality Best constant factor optimal matching parameter Operator norm Bounded operator
在线阅读 下载PDF
基于GPGPU-sim的多kernel场景下GPGPU性能优化实验方法
5
作者 张军 魏继桢 +2 位作者 沈凡凡 谭海 何炎祥 《实验技术与管理》 CAS 北大核心 2024年第7期87-93,共7页
该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的... 该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的一种自适应线程块调度方法的改进思想、实验方法及过程,还对GPGPU的微系统结构、GPGPU-sim模拟器及源代码结构进行了介绍。实验结果表明,该文阐述的实验方法可行,相对于基准方法,该文提出的改进策略可以提升多kernel场景下GPGPU的执行效率。 展开更多
关键词 kernel场境 GPGPU GPGPU-sim 性能优化
在线阅读 下载PDF
Interior-Point Algorithm for Linear Optimization Based on a New Kernel Function 被引量:2
6
作者 CHEN Donghai ZHANG Mingwang LI Weihua 《Wuhan University Journal of Natural Sciences》 CAS 2012年第1期12-18,共7页
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr... In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions. 展开更多
关键词 linear optimization interior-point algorithms pri- mal-dual methods kernel function polynomial complexity
原文传递
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:4
7
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN Robust kernel density estimation Robust optimization Integrated demand response
在线阅读 下载PDF
A Full-Newton Step Feasible IPM for Semidefinite Optimization Based on a Kernel Function with Linear Growth Term 被引量:2
8
作者 GENG Jie ZHANG Mingwang PANG Jinjuan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第6期501-509,共9页
In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determini... In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determining the search directions and for measuring the distance between the given iterate and theμ-center for the algorithm.By developing a new norm-based proximity measure and some technical results,we derive the iteration bound that coincides with the currently best known iteration bound for the algorithm with small-update method.In our knowledge,this result is the first instance of full-Newton step feasible interior-point method for SDO which involving the kernel function. 展开更多
关键词 semidefinite optimization interior-point algorithm kernel function iteration complexity
原文传递
Decision Bayes Criteria for Optimal Classifier Based on Probabilistic Measures 被引量:1
9
作者 Wissal Drira Faouzi Ghorbel 《Journal of Electronic Science and Technology》 CAS 2014年第2期216-219,共4页
This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the... This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well. 展开更多
关键词 Bayesian classifier dimension reduction kernel method optimization probabilistic dependence measure smoothing parameter
在线阅读 下载PDF
Boosting Kernel Search Optimizer with Slime Mould Foraging Behavior for Combined Economic Emission Dispatch Problems 被引量:2
10
作者 Ruyi Dong Lixun Sun +3 位作者 Long Ma Ali Asghar Heidari Xinsen Zhou Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2863-2895,共33页
Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the... Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the combined economic emission dispatch(CEED)problem.Inspired by the foraging behavior in the slime mould algorithm(SMA),the kernel matrix of the kernel search optimizer(KSO)is intensified.The proposed BKSO is superior to the standard KSO in terms of exploitation ability,robustness,and convergence rate.The CEC2013 test function is used to assess the improved KSO's performance and compared to 11 well-known optimization algorithms.BKSO performs better in statistical results and convergence curves.At the same time,BKSO achieves better fuel costs and fewer pollution emissions by testing with four real CEED cases,and the Pareto solution obtained is also better than other MAs.Based on the experimental results,BKSO has better performance than other comparable MAs and can provide more economical,robust,and cleaner solutions to CEED problems. 展开更多
关键词 Combined economic emission dispatch kernel search optimization Slime mould algorithm Valve point effect Greenhouse gases
在线阅读 下载PDF
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:2
11
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
在线阅读 下载PDF
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
12
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
在线阅读 下载PDF
Multi-state Information Dimension Reduction Based on Particle Swarm Optimization-Kernel Independent Component Analysis
13
作者 邓士杰 苏续军 +1 位作者 唐力伟 张英波 《Journal of Donghua University(English Edition)》 EI CAS 2017年第6期791-795,共5页
The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA'... The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven. 展开更多
关键词 kernel independent component analysis(KICA) particle swarm optimization(PSO) feature dimension reduction fitness function
在线阅读 下载PDF
Kernel Function-Based Primal-Dual Interior-Point Methods for Symmetric Cones Optimization
14
作者 ZHAO Dequan ZHANG Mingwang 《Wuhan University Journal of Natural Sciences》 CAS 2014年第6期461-468,共8页
In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe... In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue. 展开更多
关键词 symmetric cones optimization kernel function Interior-point method polynomial complexity
原文传递
Neural Network Optimization of Multivariate KDE Bandwidth for Buoy Spatial Information
15
作者 XU Liangkun XUE Han +1 位作者 JIN Yongxing ZHOU Shibo 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第5期773-779,共7页
It is one of the responsibilities of the navigation support department to ensure the correct layout position of the light buoy and provide as accurate position information as possible for ship navigation and positioni... It is one of the responsibilities of the navigation support department to ensure the correct layout position of the light buoy and provide as accurate position information as possible for ship navigation and positioning.If the position deviation of the light buoy is too large to be detected in time,sending wrong navigation assistance information to the ship will directly affect the navigation safety of the ship and increase the pressure on the management department.Therefore,mastering the offset characteristics of light buoy is of great significance for the maintenance of light buoy and improving the navigation aid efficiency of light buoy.Kernel density estimation can intuitively express the spatial and temporal distribution characteristics of buoy position,and indicates the intensive areas of buoy position in the channel.In this paper,in order to speed up deciding the optimal variable width of kernel density estimator,an improved adaptive variable width kernel density estimator is proposed,which reduces the risk of too smooth probability density estimation phenomenon and improves the estimation accuracy of probability density.A fractional recurrent neural network is designed to search the optimal bandwidth of kernel density estimator.It not only achieves faster training speed,but also improves the estimation accuracy of probability density. 展开更多
关键词 kernel density estimation BUOY bandwidth optimization recurrent neural network navigation aid efficiency spatial information
原文传递
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
16
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
南方玉米籽粒联合收获机清选装置参数优化与试验 被引量:1
17
作者 刘志 季邦 +2 位作者 王修善 范荣巍 谢方平 《江西农业大学学报》 北大核心 2025年第3期791-802,共12页
【目的】针对南方丘陵地区玉米籽粒联合收获机在清选作业中籽粒含杂率和清选损失率偏高的问题,通过优化清选装置结构和工作参数,提升清选效率,降低籽粒含杂率和清选损失率。【方法】对清选装置的工作原理进行了系统分析,并针对尾部逐稿... 【目的】针对南方丘陵地区玉米籽粒联合收获机在清选作业中籽粒含杂率和清选损失率偏高的问题,通过优化清选装置结构和工作参数,提升清选效率,降低籽粒含杂率和清选损失率。【方法】对清选装置的工作原理进行了系统分析,并针对尾部逐稿器结构进行了优化设计。在此基础上,设计了一种以鱼鳞筛为主体结构的风机转速、振动频率和鱼鳞筛开度参数可调的玉米清选试验台。通过单因素试验,选取风机转速、振动频率和鱼鳞筛开度作为主要影响因素,以籽粒含杂率和清选损失率为评价指标,确定了各因素的最佳参数范围。随后,采用三因素三水平响应曲面试验,建立了各因素与评价指标之间的回归数学模型,并利用Design Expert 13.0软件对模型进行求解,得出最佳参数组合。最后,将优化后的参数应用于清选试验台和4YZ-2玉米联合收获机,分别进行了验证试验和田间试验,以评估优化效果。【结果】单因素试验结果表明,风机转速、振动频率和鱼鳞筛开度对清选性能具有显著影响。最佳参数范围为:风机转速1500~1700 r/min、振动频率540~580 r/min、鱼鳞筛开度16~20 mm。响应曲面试验进一步优化了参数组合,得出最佳参数为:风机转速1604.3 r/min、振动频率540.0 r/min、鱼鳞筛开度18.1 mm,此时对应的籽粒含杂率与清选损失率分别为2.21%和0.9%。将此参数取整后的验证试验结果显示,最佳参数组合下的籽粒含杂率与清选损失率分别为2.304%和0.73%。田间试验结果表明,当籽粒含水率为27.8%时,籽粒含杂率为2.13%,清选损失率为0.98%。【结论】验证试验和田间试验结果与回归模型的预测值较为接近,表明所建立的回归模型具有较高的可信度,优化结果有效。本研究通过优化清选装置的结构和工作参数,降低了籽粒含杂率和清选损失率,为玉米籽粒联合收获机清选性能的改善提供了可靠的理论依据。 展开更多
关键词 玉米籽粒联合收获机 清选装置 参数优化 籽粒含杂率 清选损失率 鱼鳞筛
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
18
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
19
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKELM 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
20
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部