The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction pr...The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.