Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS...This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability.展开更多
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s...Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
A symplectic algorithm is used to solve optimal control problems. Linear and nonlinear examples aregiven. Numerical analyses show that the symplectic algorithm gives satisfactory performance in that it works inlarge s...A symplectic algorithm is used to solve optimal control problems. Linear and nonlinear examples aregiven. Numerical analyses show that the symplectic algorithm gives satisfactory performance in that it works inlarge step and is of high speed and accuracy. This indicates that the symplectic algorithm is more effective andreasonable in solving optimal control problems.展开更多
The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming...The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming at this problem,a virtual inertia optimal control strategy applied to optical storage microgrid is proposed.Firstly,a small signal model of the system is established to theoretically analyze the influence of virtual inertia and damping coefficient on DC bus voltage and to obtain the constraint range of virtual inertia and damping coefficient;Secondly,aiming at the defect that the Sailfish optimization algorithm is easy to premature maturity,a Sailfish optimization algorithm based on the leak-proof net and the cross-mutation propagation mechanism is proposed;Finally,the virtual inertia and damping coefficient of the system are optimized by the improved Sailfish algorithm to obtain the best control parameters.The simulation results in Matlab/Simulink show that the virtual inertia control optimized by the improved Sailfish algorithm improves the system inertia as well as the dynamic response and robustness of the DC bus voltage.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that...A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to cont...Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.展开更多
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula...The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.展开更多
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop...In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s...An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.展开更多
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa...Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been ...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy.In this paper,a series-parallel hybrid electric bus as well as its control strategy is revealed,and a control parameter optimization approach using the real-valued genetic algorithm is proposed.The optimization objective is to minimize the fuel consumption while sustain the battery state of charge,a tangent penalty function of state of charge(SOC)is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem.For this strategy,the vehicle operating mode is switched based on the vehicle speed,and an"optimal line"typed strategy is designed for the parallel control.The optimization parameters include the speed threshold for mode switching,the highest state of charge allowed,the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed.They are optimized through numerical experiments based on real-value genes,arithmetic crossover and mutation operators.The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test,in which a control area network-based monitor system was used to trace the driving schedule.The test result shows that this approach is feasible for the control parameter optimization.This approach can be applied to not only the novel construction presented in this paper,but also other types of hybrid electric vehicles.展开更多
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金supported by Ladoke Akintola University of Technology,Ogbomoso,Nigeria and the University of Zululand,South Africa.
文摘This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability.
基金The National Natural Science Foundation of China(62173172).
文摘Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.
文摘A symplectic algorithm is used to solve optimal control problems. Linear and nonlinear examples aregiven. Numerical analyses show that the symplectic algorithm gives satisfactory performance in that it works inlarge step and is of high speed and accuracy. This indicates that the symplectic algorithm is more effective andreasonable in solving optimal control problems.
基金the National Natural Science Foundation of China(52177184)。
文摘The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming at this problem,a virtual inertia optimal control strategy applied to optical storage microgrid is proposed.Firstly,a small signal model of the system is established to theoretically analyze the influence of virtual inertia and damping coefficient on DC bus voltage and to obtain the constraint range of virtual inertia and damping coefficient;Secondly,aiming at the defect that the Sailfish optimization algorithm is easy to premature maturity,a Sailfish optimization algorithm based on the leak-proof net and the cross-mutation propagation mechanism is proposed;Finally,the virtual inertia and damping coefficient of the system are optimized by the improved Sailfish algorithm to obtain the best control parameters.The simulation results in Matlab/Simulink show that the virtual inertia control optimized by the improved Sailfish algorithm improves the system inertia as well as the dynamic response and robustness of the DC bus voltage.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
文摘A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金Supported by National Natural Science Foundation of China(61304079,61125306,61034002)the Open Research Project from SKLMCCS(20120106)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-13-018A)the China Postdoctoral Science.Foundation(201_3M_5305_27)
文摘Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.
文摘The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
基金The National Natural Science Foundation of China(No.51208054)
文摘In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
文摘An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.
基金Project supported by the National Natural Science Foundation of China(Nos.91648101 and11672233)the Northwestern Polytechnical University(NPU)Foundation for Fundamental Research(No.3102017AX008)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S201710699033)
文摘Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy.In this paper,a series-parallel hybrid electric bus as well as its control strategy is revealed,and a control parameter optimization approach using the real-valued genetic algorithm is proposed.The optimization objective is to minimize the fuel consumption while sustain the battery state of charge,a tangent penalty function of state of charge(SOC)is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem.For this strategy,the vehicle operating mode is switched based on the vehicle speed,and an"optimal line"typed strategy is designed for the parallel control.The optimization parameters include the speed threshold for mode switching,the highest state of charge allowed,the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed.They are optimized through numerical experiments based on real-value genes,arithmetic crossover and mutation operators.The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test,in which a control area network-based monitor system was used to trace the driving schedule.The test result shows that this approach is feasible for the control parameter optimization.This approach can be applied to not only the novel construction presented in this paper,but also other types of hybrid electric vehicles.