In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovsk...In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,...In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.展开更多
Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain informat...Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.展开更多
In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which ha...In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).展开更多
We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach invo...We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach involves conducting precise computations for a series of complex integrals to identify appropriate test functions,and through a detailed analysis of these test functions,we derive the boundedness properties of the operator T.This work is significant in the study of the Bergman projection operators.展开更多
This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metri...This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metric.Then,we show a formula of the Hausdorff measure of noncompactness of operators in l^(p)(1≤p<∞).Finally,several common equivalent measures of noncompactness of operators and related proofs are provided.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
We consider the hyponormality of the block dual Toeplitz operator S_(Φ)acting on the orthogonal complement of the vector valued weighted Bergman space (A_(α)^(2)(D,C^(n)))^(⊥).We provide a necessary and sufficient ...We consider the hyponormality of the block dual Toeplitz operator S_(Φ)acting on the orthogonal complement of the vector valued weighted Bergman space (A_(α)^(2)(D,C^(n)))^(⊥).We provide a necessary and sufficient condition for the hyponormality of SΦwith matrix valued bounded harmonic symbol.In this process,we introduce a function g_(w,s)∈(A_(α)^(2)(D))^(⊥),which is similar to the reproducing kernel of the weighted Bergman space A_(α)^(2)(D).We also give some additional applications of the function gw,s∈(A_(α)^(2)(D))^(⊥).展开更多
The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
Let M⊆B(H)be a countable decomposable properly infinite von Neumann algebra with a faithful normal semifinite tracial weightτwhere B(H)is the set of all bounded linear operators on Hilbert space H.The main purpose of...Let M⊆B(H)be a countable decomposable properly infinite von Neumann algebra with a faithful normal semifinite tracial weightτwhere B(H)is the set of all bounded linear operators on Hilbert space H.The main purpose of this article is to introduce generalized weak wave operators Wf_(±),generalized weak abelian wave operators ■ and generalized stationary wave operators U_(±) in M and then to explore the relation among W_(±),■,U_(±) and generalized wave operators W_(±).展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of...In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
This paper puts forword 11 cartographic generalization operator models and introduces their mathematical definitions,and thus a precise mathematical form and quantitative description has been given to these formerly l...This paper puts forword 11 cartographic generalization operator models and introduces their mathematical definitions,and thus a precise mathematical form and quantitative description has been given to these formerly limited qualitative concepts.The meaning of mathematical definition of operators for cartographic generalization and the application prospect in computer_aided cartography (CAC) is stated.ract The Jurassic strata in Jingyan of Sichuan containing the Mamenchinsaurus fauna are dealt with and divided in this paper. The Mamenchisaurus fossils contained there are compared in morphological features and stratigraphically with other types of the genus on by one. The comprehensive analysis show that the Mamenchisaurus fauna of Jingyan appeared in the early Late Jurassic and is primitive in morphology. The results of the morphological identification and stratigraphical study agree with each other. Their evolutionary processes in different apoches of the Late Jurassic also made clear. Key words Jingyan, Sichuan, Mamenchisaurus Fauna, stratigraphy, evolution展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I...Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).展开更多
Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient c...Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.展开更多
基金Supported by Fujian Provincial Natural Science Foundation of China(2024J01792)。
文摘In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金Supported by by Natural Science Foundation of Henan(202300410184 and242300421387)。
文摘In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.
基金supported by the National Natural Science Foundation of China(No.62172095).
文摘Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.
文摘In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
基金Liu’s research was supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(31610030)Deng’s research was supported by the NSFC(11971042,12071035)the National Key R&D Program of China(2021YFA1002600).
文摘We explore some necessary and sufficient conditions for the boundedness of the Forelli-Rudin type operator T on the weighted Lebesgue space associated with tubular domains over the forward light cone.Our approach involves conducting precise computations for a series of complex integrals to identify appropriate test functions,and through a detailed analysis of these test functions,we derive the boundedness properties of the operator T.This work is significant in the study of the Bergman projection operators.
文摘This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metric.Then,we show a formula of the Hausdorff measure of noncompactness of operators in l^(p)(1≤p<∞).Finally,several common equivalent measures of noncompactness of operators and related proofs are provided.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.
基金Supported by the Scientific Research Fund of Liaoning Provincial Education Department of China (Grant No.LJKMZ20221405)the National Natural Science Foundation of China (Grant No.12031002)。
文摘We consider the hyponormality of the block dual Toeplitz operator S_(Φ)acting on the orthogonal complement of the vector valued weighted Bergman space (A_(α)^(2)(D,C^(n)))^(⊥).We provide a necessary and sufficient condition for the hyponormality of SΦwith matrix valued bounded harmonic symbol.In this process,we introduce a function g_(w,s)∈(A_(α)^(2)(D))^(⊥),which is similar to the reproducing kernel of the weighted Bergman space A_(α)^(2)(D).We also give some additional applications of the function gw,s∈(A_(α)^(2)(D))^(⊥).
文摘The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
基金Supported by the Undergraduate Training Program on Innovation and Entrepreneurship(Grant No.X202110251333)National Natural Science Foundation of China(Grant No.11671133).
文摘Let M⊆B(H)be a countable decomposable properly infinite von Neumann algebra with a faithful normal semifinite tracial weightτwhere B(H)is the set of all bounded linear operators on Hilbert space H.The main purpose of this article is to introduce generalized weak wave operators Wf_(±),generalized weak abelian wave operators ■ and generalized stationary wave operators U_(±) in M and then to explore the relation among W_(±),■,U_(±) and generalized wave operators W_(±).
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
文摘In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
文摘This paper puts forword 11 cartographic generalization operator models and introduces their mathematical definitions,and thus a precise mathematical form and quantitative description has been given to these formerly limited qualitative concepts.The meaning of mathematical definition of operators for cartographic generalization and the application prospect in computer_aided cartography (CAC) is stated.ract The Jurassic strata in Jingyan of Sichuan containing the Mamenchinsaurus fauna are dealt with and divided in this paper. The Mamenchisaurus fossils contained there are compared in morphological features and stratigraphically with other types of the genus on by one. The comprehensive analysis show that the Mamenchisaurus fauna of Jingyan appeared in the early Late Jurassic and is primitive in morphology. The results of the morphological identification and stratigraphical study agree with each other. Their evolutionary processes in different apoches of the Late Jurassic also made clear. Key words Jingyan, Sichuan, Mamenchisaurus Fauna, stratigraphy, evolution
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
基金supported by the National Natural Science Foundation of China(12071076)the Scientific Research Start-up Foundation of Fujian University of Technology(GY-Z23238)the Program for Education and Scientific Research of Young and Middle-Aged Teachers in Fujian Province(JAT191128,JT180818)。
文摘Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).
基金supported by the project Disuguaglianze analitiche e geometriche,funded by the Gruppo per Analisi Matematica la Probabilitàe le loro Applicazioni.
文摘Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.