Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in oper...Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines.展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">...When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><em><span style="white-space:nowrap;"></span></em><em></em></span> </span>is a linear differential operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span> </span></em></span></span>such that <span style="white-space:nowrap;">D<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em></span>=<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span></span> implies <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span>=0</span>. When D is involutive, the procedure provides successive first order involutive operators D1, ..., D<sub>n</sub>, when the ground manifold has dimension <em>n</em>, a result first found by M. Janet as early as in 1920, in a footnote. However, the link between this “Janet sequence” and the “Spencer sequence” first found by the author of this paper in 1978 is still not acknowledged. Conversely, when D<sub>1</sub> is given, a more difficult “inverse problem” is to look for an operator D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><em><span style="white-space:nowrap;">ξ</span></em></em><span style="white-space:nowrap;">→</span><em><em><span style="white-space:nowrap;">η</span></em><em></em><em></em> </em><em></em></span> </span>having the generating CC <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span><em></em>=0</span>. If this is possible, that is when the differential module defined by D<sub>1</sub> is torsion-free, one shall say that the operator D<sub>1</sub> is parametrized by D and there is no relation in general between D and D<sub>2</sub>. The parametrization is said to be “minimum” if the differential module defined by D has a vanishing differential rank and is thus a torsion module. The solution of this problem, first found by the author of this paper in 1995, is still not acknowledged. As for the applications of the “differential double duality” theory to standard equations of physics (<em>Cauchy</em> and Maxwell equations can be parametrized while <em>Einstein</em> equations cannot), we do not know other references. When <span style="font-size:10.0pt;font-family:;" "="">erator in arbitrary dimension</span>=1 as in control theory, the fact that controllability is a “built in” property of a control system, amounting to the existence of a parametrization and thus not depending on the choice of inputs and outputs, even with variable coefficients, is still not acknowledged by engineers. The parametrization of the <em>Cauchy</em> stress operator in arbitrary dimension <em>n</em> has nevertheless attracted, “separately” and without any general “guiding line”, many famous scientists (G.B. Airy in 1863 for <em>n </em>= 2, J.C. Maxwell in 1863, G. Morera and E. Beltrami in 1892 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 3</span> , A. Einstein in 1915 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 4</span> ). The aim of this paper is to solve the minimum parametrization problem in arbitrary dimension and to apply it through effective methods that could even be achieved by using computer algebra. Meanwhile, we prove that all these works are using the <em>Einstein</em> operator which is self-adjoint and not the <em>Ricci</em> operator, a fact showing that the <em>Einstein</em> operator, which cannot be parametrized, has already been exhibited by Beltrami more than 20 years before <em>Einstein</em>. As a byproduct, they are all based on the same confusion between the so-called <em>div</em> operator induced from the <em>Bianchi </em>operator D<sub>2</sub> and the <em>Cauchy</em> operator which is the formal adjoint of the Killing operator D parametrizing the Riemann operator D<sub>1</sub> for an arbitrary <em>n</em>. We prove that this purely mathematical result deeply questions the origin and existence of gravitational waves. We also present the similar motivating situation met in the study of contact structures when <em>n</em> = 3. Like the Michelson and Morley experiment, it is thus an open historical problem to know whether <em>Einstein</em> was aware of these previous works or not, but the comparison needs no comment.展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I...Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).展开更多
In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,...In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.展开更多
In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovsk...In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
In this paper we mainly give some characterizations for the boundedness of the weight Hardy operator, maximal operator, potential operator and singular integral operator on the vanishing generalized weak Morrey spaces...In this paper we mainly give some characterizations for the boundedness of the weight Hardy operator, maximal operator, potential operator and singular integral operator on the vanishing generalized weak Morrey spaces VWLρП,φ(Ω) with bounded setΩ .展开更多
The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
By using the technique of real analysis,the parameter conditions for Hilberttype series operator and integral operator T_(1)(˜a)(x)=∑∞n=1 K(n,x)a_(n),T_(2)(f)_(n)=∫+∞0 K(n,x)f(x)dx.bounded with homogeneous kernels...By using the technique of real analysis,the parameter conditions for Hilberttype series operator and integral operator T_(1)(˜a)(x)=∑∞n=1 K(n,x)a_(n),T_(2)(f)_(n)=∫+∞0 K(n,x)f(x)dx.bounded with homogeneous kernels are discussed.The necessary and sufficient conditions for T_(1):l^(α)_(p)→L^(β)_(p)^((1−p))p(0,+∞)and T_(2):L_(q)^(β)(0,+∞)→l^(α(1−q))_(q)bounded are obtained,and their norm expressions are established under certain conditions.展开更多
In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure f...In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure for the terms of a finite, positively define kernel of operators, is studied. The notion of “stability of the dimension” in truncated, scalar moment problems was introduced in [1]. In this note, the concept of “stability” of the algebraic dimension of the obtained Hilbert space from the space of the polynomials of finite, total degree with respect to the null subspace of a unital square positive functional, in [1], is adapted to the concept of stability of the algebraic dimension of the Hilbert space obtained as the separated space of some space of vectorial functions with respect to the null subspace of a hermitian square positive functional attached to a positive definite kernel of operators. In connection with the stability of the dimension of such obtained Hilbert space, a Hausdorff truncated operator-valued moment problem and the stability of the number of atoms of the representing measure for the terms of the given operator kernel, in this note, is studied.展开更多
Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient c...Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.展开更多
In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the ...In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the stability of property(ω),and investigate the relationship between the stability of property(ω)and the(ω)-property of operator functions.展开更多
Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classica...Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classical fuzzy theory,provide enhanced flexibility for representing complex uncertainty.In this paper,we propose a unified parametric divergence operator for FFSs,which comprehensively captures the interplay among membership,nonmembership,and hesitation degrees.The proposed operator is rigorously analyzed with respect to key mathematical properties,including non-negativity,non-degeneracy,and symmetry.Notably,several well-known divergence operators,such as Jensen-Shannon divergence,Hellinger distance,andχ2-divergence,are shown to be special cases within our unified framework.Extensive experiments on pattern classification,hierarchical clustering,and multiattribute decision-making tasks demonstrate the competitive performance and stability of the proposed operator.These results confirm both the theoretical significance and practical value of our method for advanced fuzzy information processing in machine learning and intelligent decision-making.展开更多
Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametr...Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametric bank angle profiles in Mars atmospheric entry missions.The methodology includes a universal approach to handling path constraints and a reliable solution method based on the Particle Swarm Optimization(PSO)algorithm.For illustrative purposes,a mission with the objective of maximizing terminal altitude is considered.The original entry optimization problem is converted into optimizing three coefficients for the bank angle profiles with terminal constraints by formulating a parametric Mars entry bank angle profile and constraint handling methods.The parameter optimization problem is addressed using the PSO algorithm,with reliability enhanced by increasing the PSO swarm size.To improve computational efficiency,an enhanced Deep Operator Network(Deep ONet)is used as a dynamics solver to predict terminal states under various bank angle profiles rapidly.Numerical simulations demonstrate that the proposed methodology ensures reliable convergence with a sufficiently large PSO swarm while maintaining high computational efficiency facilitated by the neural-network-based dynamics solver.Compared to the existing methodologies,this methodology offers a streamlined process,the reduced sensitivity to initial guesses,and the improved computational efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52475543)Natural Science Foundation of Henan(Grant No.252300421101)+1 种基金Henan Province University Science and Technology Innovation Talent Support Plan(Grant No.24HASTIT048)Science and Technology Innovation Team Project of Zhengzhou University of Light Industry(Grant No.23XNKJTD0101).
文摘Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines.
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
文摘When D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><em><span style="white-space:nowrap;"></span></em><em></em></span> </span>is a linear differential operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;">→</span></span><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span> </span></em></span></span>such that <span style="white-space:nowrap;">D<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ</span></span></em></span>=<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span></span> implies <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span>=0</span>. When D is involutive, the procedure provides successive first order involutive operators D1, ..., D<sub>n</sub>, when the ground manifold has dimension <em>n</em>, a result first found by M. Janet as early as in 1920, in a footnote. However, the link between this “Janet sequence” and the “Spencer sequence” first found by the author of this paper in 1978 is still not acknowledged. Conversely, when D<sub>1</sub> is given, a more difficult “inverse problem” is to look for an operator D: <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><em><span style="white-space:nowrap;">ξ</span></em></em><span style="white-space:nowrap;">→</span><em><em><span style="white-space:nowrap;">η</span></em><em></em><em></em> </em><em></em></span> </span>having the generating CC <span style="white-space:nowrap;">D<sub>1</sub><span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">η</span></span></em></span><em></em>=0</span>. If this is possible, that is when the differential module defined by D<sub>1</sub> is torsion-free, one shall say that the operator D<sub>1</sub> is parametrized by D and there is no relation in general between D and D<sub>2</sub>. The parametrization is said to be “minimum” if the differential module defined by D has a vanishing differential rank and is thus a torsion module. The solution of this problem, first found by the author of this paper in 1995, is still not acknowledged. As for the applications of the “differential double duality” theory to standard equations of physics (<em>Cauchy</em> and Maxwell equations can be parametrized while <em>Einstein</em> equations cannot), we do not know other references. When <span style="font-size:10.0pt;font-family:;" "="">erator in arbitrary dimension</span>=1 as in control theory, the fact that controllability is a “built in” property of a control system, amounting to the existence of a parametrization and thus not depending on the choice of inputs and outputs, even with variable coefficients, is still not acknowledged by engineers. The parametrization of the <em>Cauchy</em> stress operator in arbitrary dimension <em>n</em> has nevertheless attracted, “separately” and without any general “guiding line”, many famous scientists (G.B. Airy in 1863 for <em>n </em>= 2, J.C. Maxwell in 1863, G. Morera and E. Beltrami in 1892 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 3</span> , A. Einstein in 1915 for <em style="white-space:normal;">n </em><span style="white-space:normal;">= 4</span> ). The aim of this paper is to solve the minimum parametrization problem in arbitrary dimension and to apply it through effective methods that could even be achieved by using computer algebra. Meanwhile, we prove that all these works are using the <em>Einstein</em> operator which is self-adjoint and not the <em>Ricci</em> operator, a fact showing that the <em>Einstein</em> operator, which cannot be parametrized, has already been exhibited by Beltrami more than 20 years before <em>Einstein</em>. As a byproduct, they are all based on the same confusion between the so-called <em>div</em> operator induced from the <em>Bianchi </em>operator D<sub>2</sub> and the <em>Cauchy</em> operator which is the formal adjoint of the Killing operator D parametrizing the Riemann operator D<sub>1</sub> for an arbitrary <em>n</em>. We prove that this purely mathematical result deeply questions the origin and existence of gravitational waves. We also present the similar motivating situation met in the study of contact structures when <em>n</em> = 3. Like the Michelson and Morley experiment, it is thus an open historical problem to know whether <em>Einstein</em> was aware of these previous works or not, but the comparison needs no comment.
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
基金supported by the National Natural Science Foundation of China(12071076)the Scientific Research Start-up Foundation of Fujian University of Technology(GY-Z23238)the Program for Education and Scientific Research of Young and Middle-Aged Teachers in Fujian Province(JAT191128,JT180818)。
文摘Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).
基金Supported by by Natural Science Foundation of Henan(202300410184 and242300421387)。
文摘In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.
基金Supported by Fujian Provincial Natural Science Foundation of China(2024J01792)。
文摘In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金Supported by the Natural Science Foundation of Ningxia(Grant No.NZ15055)Institution of Higher Education Scientific Research Project in Ningxia(Grant No.NGY2017011)the National Natural Science Foundation of China(Grant Nos.11261041,11361044)
文摘In this paper we mainly give some characterizations for the boundedness of the weight Hardy operator, maximal operator, potential operator and singular integral operator on the vanishing generalized weak Morrey spaces VWLρП,φ(Ω) with bounded setΩ .
文摘The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
基金Supported by Guangdong Basic and Applied Basic Research Foundation Natural Science Foundation(Grant No.2021A1515010055)Guangzhou Science and Technology Plan Project(Grant No.202102080177).
文摘By using the technique of real analysis,the parameter conditions for Hilberttype series operator and integral operator T_(1)(˜a)(x)=∑∞n=1 K(n,x)a_(n),T_(2)(f)_(n)=∫+∞0 K(n,x)f(x)dx.bounded with homogeneous kernels are discussed.The necessary and sufficient conditions for T_(1):l^(α)_(p)→L^(β)_(p)^((1−p))p(0,+∞)and T_(2):L_(q)^(β)(0,+∞)→l^(α(1−q))_(q)bounded are obtained,and their norm expressions are established under certain conditions.
文摘In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure for the terms of a finite, positively define kernel of operators, is studied. The notion of “stability of the dimension” in truncated, scalar moment problems was introduced in [1]. In this note, the concept of “stability” of the algebraic dimension of the obtained Hilbert space from the space of the polynomials of finite, total degree with respect to the null subspace of a unital square positive functional, in [1], is adapted to the concept of stability of the algebraic dimension of the Hilbert space obtained as the separated space of some space of vectorial functions with respect to the null subspace of a hermitian square positive functional attached to a positive definite kernel of operators. In connection with the stability of the dimension of such obtained Hilbert space, a Hausdorff truncated operator-valued moment problem and the stability of the number of atoms of the representing measure for the terms of the given operator kernel, in this note, is studied.
基金supported by the project Disuguaglianze analitiche e geometriche,funded by the Gruppo per Analisi Matematica la Probabilitàe le loro Applicazioni.
文摘Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.
基金supported by the National Natural Science Foundation of China(No.11501419)the Nature Science Basic Research Plan in Shaanxi Province of China(No.2021JM-519)。
文摘In this paper,using the property of uniform Fredholm non-positive index of bounded linear operators,we give criteria for operators and their functions to possess property(ω),and several equivalent conditions for the stability of property(ω),and investigate the relationship between the stability of property(ω)and the(ω)-property of operator functions.
文摘Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classical fuzzy theory,provide enhanced flexibility for representing complex uncertainty.In this paper,we propose a unified parametric divergence operator for FFSs,which comprehensively captures the interplay among membership,nonmembership,and hesitation degrees.The proposed operator is rigorously analyzed with respect to key mathematical properties,including non-negativity,non-degeneracy,and symmetry.Notably,several well-known divergence operators,such as Jensen-Shannon divergence,Hellinger distance,andχ2-divergence,are shown to be special cases within our unified framework.Extensive experiments on pattern classification,hierarchical clustering,and multiattribute decision-making tasks demonstrate the competitive performance and stability of the proposed operator.These results confirm both the theoretical significance and practical value of our method for advanced fuzzy information processing in machine learning and intelligent decision-making.
基金supported in part by the National Defense Basic Scientific Research Program of China(No.JCKY2021603B030)the Shenzhen Fundamental Research Program,China(No.JCYJ20220818102601004)the Science Center Program of National Natural Science Foundation of China(No.62188101)。
文摘Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametric bank angle profiles in Mars atmospheric entry missions.The methodology includes a universal approach to handling path constraints and a reliable solution method based on the Particle Swarm Optimization(PSO)algorithm.For illustrative purposes,a mission with the objective of maximizing terminal altitude is considered.The original entry optimization problem is converted into optimizing three coefficients for the bank angle profiles with terminal constraints by formulating a parametric Mars entry bank angle profile and constraint handling methods.The parameter optimization problem is addressed using the PSO algorithm,with reliability enhanced by increasing the PSO swarm size.To improve computational efficiency,an enhanced Deep Operator Network(Deep ONet)is used as a dynamics solver to predict terminal states under various bank angle profiles rapidly.Numerical simulations demonstrate that the proposed methodology ensures reliable convergence with a sufficiently large PSO swarm while maintaining high computational efficiency facilitated by the neural-network-based dynamics solver.Compared to the existing methodologies,this methodology offers a streamlined process,the reduced sensitivity to initial guesses,and the improved computational efficiency.