Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv...Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity ...BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.展开更多
Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the pr...Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the presence of Na_3S_2O_4.展开更多
Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)u...Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
In this paper, a new computational method for improving the accuracy of numerically computed solutions is introduced. The computational method is based on the one-step method and conserved quantities of holonomic syst...In this paper, a new computational method for improving the accuracy of numerically computed solutions is introduced. The computational method is based on the one-step method and conserved quantities of holonomic systems are considered as kinematical constraints in this method.展开更多
This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfact...This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfactants or dispersants for stabilising the capsules. The results show that the one-step method allows the tuning of the size and polydispersity of the capsules, and the use of different core materials. Analyses of the capsules show that they contain about 65% phase change materials. The results also suggest no need for a stabilising agent due to self-stabilisation by the amine groups. Further work is underway to investigate the mechanical and thermal properties of the microcapsules and the scale-up of the method.展开更多
Surface plasmon resonance(SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale a...Surface plasmon resonance(SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS(Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.展开更多
Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the ...Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–vip (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.展开更多
A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two e...A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two examples are given to illustrate the results of the method.展开更多
By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic d...By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
This paper presents a class of hybrid one-step methods that are obtained by using Cramer's rule and rational approximations to function exp(q). The algorithms fall into the catalogue of implicit formula, which inv...This paper presents a class of hybrid one-step methods that are obtained by using Cramer's rule and rational approximations to function exp(q). The algorithms fall into the catalogue of implicit formula, which involves sth order derivative and s+1 free parameters. The order of the algorithms satisfies s+1≤p≤2s+2. The stability of the methods is also studied, necessary and sufficient conditions for A-stability and L-stability are given. In addition, some examples are also given to demonstrate the method presented.展开更多
Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers,...Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers, and sintering of the cured products. The results show that the average diameter and tensile strength of continuous Si-Al-C fibers are 11 to 12 μm and 1.8 to 2.0 GPa, respectively. The chemical formula of Si-Al-C fibers is SiC1.01O0.0400Al0.024, which is nearly stoichometric. The fibers are mainly composed of β-SiC crystalline, small amount of α-SiC, and amorphous SiC. Continuous Si-Al-C fibers exhibit excellent thermal stability. When the fibers were exposed in argon for 1 h, the tensile strength did not decrease until 1500°C. After heat treatment at 1800°C in argon for 1 h, the fibers maintained about 80% of the initial strength. It was higher than that of Nicalon and Hi-Nicalon fibers.展开更多
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi...Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.展开更多
The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facil...The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.展开更多
Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolv...Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolved problems,which limit its application. The first question is how to find a suitable initial solution while the other one is how to deal with the numerical problems caused by the vertical walls. In this paper,new methods have been proposed to solve above two questions. The methods have also been coded and applied to two parts to test its feasibility.展开更多
A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxye...A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.展开更多
基金Funded by the National Nature Science Foundation of China(No.52078321)。
文摘Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.
文摘Metal clusters RCCo_3(CO)_9(R-H,C1,Br,CH_3,Ph) were prepared in 18.8-57.3% yields from the reaction of cobalt(Ⅱ)salt and RCX_a under mild PTC conditions(latm CO,25℃).The cobalt salt was reduced to Co(CO)_4 in the presence of Na_3S_2O_4.
基金the Natural Science Foundation of Chongqing of China(Nos.CSTB2024NSCQ-MSX1013 and cstc2021jcyj-msxmX1139)the Science and Technology Research Program of Chongqing Education Commission(Nos.KJZD-K202304502,KJQN202201214,KJQN202001243 and KJZD-M202301201)the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(No.2024CL05).
文摘Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10372053), and the Fundamental Research Foundation of Beijing Institute of Technology (BIT-UBF-200507A4206).
文摘In this paper, a new computational method for improving the accuracy of numerically computed solutions is introduced. The computational method is based on the one-step method and conserved quantities of holonomic systems are considered as kinematical constraints in this method.
基金supported by UK EPSRC under grants EP/F023014/1 and EP/F000464/1a collaborative research fund from the Institute of Process Engineering of Chinese Academy of Sciences
文摘This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfactants or dispersants for stabilising the capsules. The results show that the one-step method allows the tuning of the size and polydispersity of the capsules, and the use of different core materials. Analyses of the capsules show that they contain about 65% phase change materials. The results also suggest no need for a stabilising agent due to self-stabilisation by the amine groups. Further work is underway to investigate the mechanical and thermal properties of the microcapsules and the scale-up of the method.
基金financially supported by the National Natural Science Foundation of China (31430061, 61401149, and U1604177)Ministry of Agriculture of China (2016ZX08009-003)the Program of China’s 1000-talents Plan
文摘Surface plasmon resonance(SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS(Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.
基金supported by the NSFC(No.22002051)Jiangsu Provincial Double-Innovation Doctor Program(No.JSSCBS20210931)+4 种基金the Innovation/Entrepreneurship Program of Jiangsu Province(No.JSSCTD202146)China Postdoctoral Science Fund(No.2021M701484)Jiangsu Postdoctoral Fund(No.2021K251B)QD-NLED device structure optimization and electroluminescence mechanism research project(No.2022YFB3606503)Jiangsu Funding Program for Excellent Postdoctoral Talent.The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and NanoBionics,Chinese Academy of Sciences(SINANO).
文摘Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–vip (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.
基金the National Natural Science Foundation of China (10572021 ,10372053)Basic Research Foundation of Beijing Institute of Tech-nology (BIT-UBF-200507A4206)
文摘A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two examples are given to illustrate the results of the method.
基金supported by the NSF of China(No.12001539)the NSF of Hunan Province(No.2020JJ5647)China Postdoctoral Science Foundation(No.2019TQ0073).
文摘By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
基金the National Natural Science Foundation of China (No.69574034)by the Management,Decision and Information System Lab.,Chinese Academy of Sciences.
文摘This paper presents a class of hybrid one-step methods that are obtained by using Cramer's rule and rational approximations to function exp(q). The algorithms fall into the catalogue of implicit formula, which involves sth order derivative and s+1 free parameters. The order of the algorithms satisfies s+1≤p≤2s+2. The stability of the methods is also studied, necessary and sufficient conditions for A-stability and L-stability are given. In addition, some examples are also given to demonstrate the method presented.
基金the National Natural Science Foundation of China (Grant No. 59972042)
文摘Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers, and sintering of the cured products. The results show that the average diameter and tensile strength of continuous Si-Al-C fibers are 11 to 12 μm and 1.8 to 2.0 GPa, respectively. The chemical formula of Si-Al-C fibers is SiC1.01O0.0400Al0.024, which is nearly stoichometric. The fibers are mainly composed of β-SiC crystalline, small amount of α-SiC, and amorphous SiC. Continuous Si-Al-C fibers exhibit excellent thermal stability. When the fibers were exposed in argon for 1 h, the tensile strength did not decrease until 1500°C. After heat treatment at 1800°C in argon for 1 h, the fibers maintained about 80% of the initial strength. It was higher than that of Nicalon and Hi-Nicalon fibers.
基金Funded by the National Natural Science of China(No.2012BAA05B06)
文摘Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.
基金supported by the National Natural Science Foundation of China(21773019,21972012)the Graduate Research and Innovation Foundation of Chongqing(CYB18044)the sharing fund of Chongqing University s Large-scale Equipment
文摘The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.
文摘Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolved problems,which limit its application. The first question is how to find a suitable initial solution while the other one is how to deal with the numerical problems caused by the vertical walls. In this paper,new methods have been proposed to solve above two questions. The methods have also been coded and applied to two parts to test its feasibility.
基金Sponsored by the Ministerial Level Advanced Research Foundation (120701BQ0126)
文摘A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.