Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) ...Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) < R}. Recall that a slowly oscillating function on X is a function f G C*(X) satisfying the following condition:展开更多
This paper deals with spaces such that their compactification is a resolvable space. A characterization of space such that its one point compactification (resp. Wallman compactification) is a resolvable space is given.
By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding...By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.展开更多
Using simple box quantization, we demonstrate explicitly that a spatial transition will release or absorb energy, and that compactification releases latent heat with an attendant change in volume and entropy. Increasi...Using simple box quantization, we demonstrate explicitly that a spatial transition will release or absorb energy, and that compactification releases latent heat with an attendant change in volume and entropy. Increasing spatial dimension for a given number of particles costs energy while decreasing dimensions supplies energy, which can be quantified, using a generalized version of the Clausius-Clapyeron relation. We show this explicitly for massive particles trapped in a box. Compactification from N -dimensional space to (N - 1) spatial dimensions is also simply demonstrated and the correct limit to achieve a lower energy result is to take the limit, Lw → 0, where Lw is the compactification length parameter. Higher dimensional space has more energy and more entropy, all other things being equal, for a given cutoff in energy.展开更多
Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The gen...Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup>X of the space X which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every f in C(X,R) (the space of bounded continuous real valued functions on X) or Cc(X,R) (the space of continuous real valued functions on X with compact support) or the dual group <span style="white-space:nowrap;">Γ of the locally compact Abelian group G is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of f. Then X is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.展开更多
The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative cont...The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative continuous compactification of a semitopological semigroup is constructed as a space of z-filters展开更多
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ...This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.展开更多
We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are d...We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are derived, leading to a new expression for the speed limit. Extending the ideas of Einstein’s Theory of Special Relativity, concepts of five-velocity and five-momenta are introduced. We get a new formula for the rest energy of a massive object. Based on a non-relativistic limit, a two-time dependent Schrödinger-like equation for infinite square-well potential is developed and solved. The extra time dimension is compactified on a closed loop topology with a period matching the Planck time. It generates interference of additional quantum states with an ultra-small period of oscillation. Some cosmological implications of the concept of four-dimensional versus five-dimensional masses are briefly discussed, too.展开更多
This paper deals with some aspects of two-time physics (i.e., 2T + 3S five-dimensional space) for a Minkowski-like space with distinct speeds of causality for the time dimensions. Detailed calculations are provided to...This paper deals with some aspects of two-time physics (i.e., 2T + 3S five-dimensional space) for a Minkowski-like space with distinct speeds of causality for the time dimensions. Detailed calculations are provided to obtain results of Kaluza-Klein type compactification for free massive scalar fields and abelian free gauge fields. As already indicated in the literature, a tower of massive fields results from the compactification with mass terms having signs opposite to those of the ones appearing in other five-dimensional theories with an extra space dimension. We perform elaborate numerical calculations to highlight the magnitude of the imaginary masses and ask if we need to explore alternative compactification techniques.展开更多
Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(...Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.展开更多
Experiments on NO2 reveal a substructure underlying the optically excited isolated hyperfine structure (hfs) levels of the molecule. This substructure is seen in a change of the symmetry of the excited molecule and is...Experiments on NO2 reveal a substructure underlying the optically excited isolated hyperfine structure (hfs) levels of the molecule. This substructure is seen in a change of the symmetry of the excited molecule and is represented by the two “states” and of a hfs-level. Optical excitation induces a transition from the ground state of the molecule to the excited state . However, the molecule evolves from to in a time τ0 ≈ 3 μs. Both and have the radiative lifetime τR ≈ 40 μs, but and differ in the degree of polarization of the fluorescence light. Zeeman coherence in the magnetic sublevels is conserved in the transition →, and optical coherence of and is able to affect (inversion effect) the transition →. This substructure, which is not caused by collisions with baryonic matter or by intramolecular dynamics in the molecule, contradicts our knowledge on an isolated hfs-level. We describe the experimental results using the assumption of extra dimensions with a compactification space of the size of the molecule, in which dark matter affects the nuclei by gravity. In , all nuclei of NO2 are confined in a single compactification space, and in , the two O nuclei of NO2 are in two different compactification spaces. Whereas and represent stable configurations of the nuclei,represents an unstable configuration because the vibrational motion in shifts one of the two O nuclei periodically off the common compactification space, enabling dark matter interaction to stimulate the transition →with the rate (τ0)−1. We revisit experimental results, which were not understood before, and we give a consistent description of these results based on the above assumption.展开更多
IntroductionGastric cancer is one of the most common cancers and one of the most frequent causes of cancer deaths worldwide. Early detection and accurate preoperative staging of gastric cancer is essential for plannin...IntroductionGastric cancer is one of the most common cancers and one of the most frequent causes of cancer deaths worldwide. Early detection and accurate preoperative staging of gastric cancer is essential for planning optimal therapy such as endoscopic mucosal resection or gastric resection and offers the best prognosis. With advanced technology in diagnostic instruments and the mass screening, early gastric cancer has been detected easier. One-point cancer of gastric is a special type of early gastric cancer. Diagnosis of one-point cancer of gastric is important for both the immediate treatment and the prognosis. There is still no consensus on the operation extent and postoperative treatment for patients with one-point cancer of gastric. Learned from previous reports, we know that existed in the superficial layer of the gastric mucosa and the superficial ulcer is one of the important characteristics of one point cancer of gastric. Herein, we report a case of one point cancer of gastric with the appearance of a deep infiltrating ulcer. To the best of our knowledge, no such type of one point cancer of gastric has been reported.展开更多
Carcinoma of the stomach is the most common malignant tumor in China. Due to advanced endoscopic techniques and equipment, the detection of early gastric carcinoma (EGC) has increased worldwide. Yet gastric one-poin...Carcinoma of the stomach is the most common malignant tumor in China. Due to advanced endoscopic techniques and equipment, the detection of early gastric carcinoma (EGC) has increased worldwide. Yet gastric one-point cancer is rarely detected.展开更多
We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalen...We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.展开更多
Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential...Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential. This paper presents a comprehensive analysis of infinite transversely isotropic poroelasticity under a fluid source, based on Biot's theory, aiming to uncover new and previously unexplored insights in the literature. We begin our study by deriving a general solution for fluid-saturated, transversely isotropic poroelastic materials in terms of harmonic functions that satisfy sixth-order homogeneous partial differential equations, using potential theory and Almansi's theorem. Based on these general solutions and potential functions, we construct a Green's function for a point fluid source, introducing three new harmonic functions with undetermined constants. These constants are determined by enforcing continuity and equilibrium conditions. Substituting these into the general solution yields fundamental solutions for poroelasticity that provide crucial support for a wide range of project problems. Numerical results and comparisons with existing literature are provided to illustrate physical mechanisms through contour plots. Our observations reveal that all components tend to zero in the far field and become singular at the concentrated source. Additionally, the contours exhibit rapid changes near the point fluid source but display gradual variations at a distance from it. These findings highlight the intricate behavior of the system under point liquid loading, offering valuable insights for further research and practical applications.展开更多
The search for mechanical properties of materials reached a highly acclaimed level, when indentations could be analysed on the basis of elastic theory for hardness and elastic modulus. The mathematical formulas proved...The search for mechanical properties of materials reached a highly acclaimed level, when indentations could be analysed on the basis of elastic theory for hardness and elastic modulus. The mathematical formulas proved to be very complicated, and various trials were published between the 1900s and 2000s. The development of indentation instruments and the wish to make the application in numerous steps easier, led in 1992 to trials with iterations by using relative values instead of absolute ones. Excessive iterations of computers with 3 + 8 free parameters of the loading and unloading curves became possible and were implemented into the instruments and worldwide standards. The physical formula for hardness was defined as force over area. For the conical, pyramidal, and spherical indenters, one simply took the projected area for the calculation of the indentation depth from the projected area, adjusted it later by the iterations with respect to fused quartz or aluminium as standard materials, and called it “contact height”. Continuously measured indentation loading curves were formulated as loading force over depth square. The unloading curves after release of the indenter used the initial steepness of the pressure relief for the calculation of what was (and is) incorrectly called “Young’s modulus”. But it is not unidirectional. And for the spherical indentations’ loading curve, they defined the indentation force over depth raised to 3/2 (but without R/h correction). They till now (2025) violate the energy law, because they use all applied force for the indenter depth and ignore the obvious sidewise force upon indentation (cf. e.g. the wood cleaving). The various refinements led to more and more complicated formulas that could not be reasonably calculated with them. One decided to use 3 + 8 free-parameter iterations for fitting to the (poor) standards of fused quartz or aluminium. The mechanical values of these were considered to be “true”. This is till now the worldwide standard of DIN-ISO-ASTM-14577, avoiding overcomplicated formulas with their complexity. Some of these are shown in the Introduction Section. By doing so, one avoided the understanding of indentation results on a physical basis. However, we open a simple way to obtain absolute values (though still on the blackbox instrument’s unsuitable force calibration). We do not iterate but calculate algebraically on the basis of the correct, physically deduced exponent of the loading force parabolas with h3/2 instead of false “h2” (for the spherical indentation, there is a calotte-radius over depth correction), and we reveal the physical errors taken up in the official worldwide “14577-Standard”. Importantly, we reveal the hitherto fully overlooked phase transitions under load that are not detectable with the false exponent. Phase-transition twinning is even present and falsifies the iteration standards. Instead of elasticity theory, we use the well-defined geometry of these indentations. By doing so, we reach simple algebraically calculable formulas and find the physical indentation hardness of materials with their onset depth, onset force and energy, as well as their phase-transition energy (temperature dependent also its activation energy). The most important phase transitions are our absolute algebraically calculated results. The now most easily obtained phase transitions under load are very dangerous because they produce polymorph interfaces between the changed and the unchanged material. It was found and published by high-enlargement microscopy (5000-fold) that these trouble spots are the sites for the development of stable, 1 to 2 µm long, micro-cracks (stable for months). If however, a force higher than the one of their formation occurs to them, these grow to catastrophic crash. That works equally with turbulences at the pickle fork of airliners. After the publication of these facts and after three fatal crashing had occurred in a short sequence, FAA (Federal Aviation Agency) reacted by rechecking all airplanes for such micro cracks. These were now found in a new fleet of airliners from where the three crashed ones came. These were previously overlooked. FAA became aware of that risk and grounded 290 (certainly all) of them, because the material of these did not have higher phase-transition onset and energy than other airplanes with better material. They did so despite the 14577-Standard that does not find (and thus formally forbids) phase transitions under indenter load with the false exponent on the indentation parabola. However, this “Standard” will, despite the present author’s well-founded petition, not be corrected for the next 5 years.展开更多
文摘Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) < R}. Recall that a slowly oscillating function on X is a function f G C*(X) satisfying the following condition:
文摘This paper deals with spaces such that their compactification is a resolvable space. A characterization of space such that its one point compactification (resp. Wallman compactification) is a resolvable space is given.
文摘By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.
文摘Using simple box quantization, we demonstrate explicitly that a spatial transition will release or absorb energy, and that compactification releases latent heat with an attendant change in volume and entropy. Increasing spatial dimension for a given number of particles costs energy while decreasing dimensions supplies energy, which can be quantified, using a generalized version of the Clausius-Clapyeron relation. We show this explicitly for massive particles trapped in a box. Compactification from N -dimensional space to (N - 1) spatial dimensions is also simply demonstrated and the correct limit to achieve a lower energy result is to take the limit, Lw → 0, where Lw is the compactification length parameter. Higher dimensional space has more energy and more entropy, all other things being equal, for a given cutoff in energy.
文摘Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup>X of the space X which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every f in C(X,R) (the space of bounded continuous real valued functions on X) or Cc(X,R) (the space of continuous real valued functions on X with compact support) or the dual group <span style="white-space:nowrap;">Γ of the locally compact Abelian group G is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of f. Then X is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.
文摘The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative continuous compactification of a semitopological semigroup is constructed as a space of z-filters
文摘This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.
文摘We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are derived, leading to a new expression for the speed limit. Extending the ideas of Einstein’s Theory of Special Relativity, concepts of five-velocity and five-momenta are introduced. We get a new formula for the rest energy of a massive object. Based on a non-relativistic limit, a two-time dependent Schrödinger-like equation for infinite square-well potential is developed and solved. The extra time dimension is compactified on a closed loop topology with a period matching the Planck time. It generates interference of additional quantum states with an ultra-small period of oscillation. Some cosmological implications of the concept of four-dimensional versus five-dimensional masses are briefly discussed, too.
文摘This paper deals with some aspects of two-time physics (i.e., 2T + 3S five-dimensional space) for a Minkowski-like space with distinct speeds of causality for the time dimensions. Detailed calculations are provided to obtain results of Kaluza-Klein type compactification for free massive scalar fields and abelian free gauge fields. As already indicated in the literature, a tower of massive fields results from the compactification with mass terms having signs opposite to those of the ones appearing in other five-dimensional theories with an extra space dimension. We perform elaborate numerical calculations to highlight the magnitude of the imaginary masses and ask if we need to explore alternative compactification techniques.
文摘Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.
文摘Experiments on NO2 reveal a substructure underlying the optically excited isolated hyperfine structure (hfs) levels of the molecule. This substructure is seen in a change of the symmetry of the excited molecule and is represented by the two “states” and of a hfs-level. Optical excitation induces a transition from the ground state of the molecule to the excited state . However, the molecule evolves from to in a time τ0 ≈ 3 μs. Both and have the radiative lifetime τR ≈ 40 μs, but and differ in the degree of polarization of the fluorescence light. Zeeman coherence in the magnetic sublevels is conserved in the transition →, and optical coherence of and is able to affect (inversion effect) the transition →. This substructure, which is not caused by collisions with baryonic matter or by intramolecular dynamics in the molecule, contradicts our knowledge on an isolated hfs-level. We describe the experimental results using the assumption of extra dimensions with a compactification space of the size of the molecule, in which dark matter affects the nuclei by gravity. In , all nuclei of NO2 are confined in a single compactification space, and in , the two O nuclei of NO2 are in two different compactification spaces. Whereas and represent stable configurations of the nuclei,represents an unstable configuration because the vibrational motion in shifts one of the two O nuclei periodically off the common compactification space, enabling dark matter interaction to stimulate the transition →with the rate (τ0)−1. We revisit experimental results, which were not understood before, and we give a consistent description of these results based on the above assumption.
文摘IntroductionGastric cancer is one of the most common cancers and one of the most frequent causes of cancer deaths worldwide. Early detection and accurate preoperative staging of gastric cancer is essential for planning optimal therapy such as endoscopic mucosal resection or gastric resection and offers the best prognosis. With advanced technology in diagnostic instruments and the mass screening, early gastric cancer has been detected easier. One-point cancer of gastric is a special type of early gastric cancer. Diagnosis of one-point cancer of gastric is important for both the immediate treatment and the prognosis. There is still no consensus on the operation extent and postoperative treatment for patients with one-point cancer of gastric. Learned from previous reports, we know that existed in the superficial layer of the gastric mucosa and the superficial ulcer is one of the important characteristics of one point cancer of gastric. Herein, we report a case of one point cancer of gastric with the appearance of a deep infiltrating ulcer. To the best of our knowledge, no such type of one point cancer of gastric has been reported.
文摘Carcinoma of the stomach is the most common malignant tumor in China. Due to advanced endoscopic techniques and equipment, the detection of early gastric carcinoma (EGC) has increased worldwide. Yet gastric one-point cancer is rarely detected.
基金Supported by the Natural Science Foundation of Xiamen(Grant No.3502Z20227184)the Natural Science Foundation of Fujian Province(Grant No.2022J01034)+2 种基金the Natural Science Foundation of Shanghai(Grant No.23ZR1435100)the National Natural Science Foundation of China(Grant Nos.12271448 and 12301054)the Fundamental Research Funds for Central Universities of China(Grant No.20720220043)。
文摘We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12272269, 11972257,11832014 and 11472193)the Shanghai Pilot Program for Basic Researchthe Shanghai Gaofeng Project for University Academic Program Development。
文摘Understanding the effects of point liquid loading on transversely isotropic poroelastic media is crucial for advancing geomechanics and biomechanics, where precise modeling of fluid-structure interactions is essential. This paper presents a comprehensive analysis of infinite transversely isotropic poroelasticity under a fluid source, based on Biot's theory, aiming to uncover new and previously unexplored insights in the literature. We begin our study by deriving a general solution for fluid-saturated, transversely isotropic poroelastic materials in terms of harmonic functions that satisfy sixth-order homogeneous partial differential equations, using potential theory and Almansi's theorem. Based on these general solutions and potential functions, we construct a Green's function for a point fluid source, introducing three new harmonic functions with undetermined constants. These constants are determined by enforcing continuity and equilibrium conditions. Substituting these into the general solution yields fundamental solutions for poroelasticity that provide crucial support for a wide range of project problems. Numerical results and comparisons with existing literature are provided to illustrate physical mechanisms through contour plots. Our observations reveal that all components tend to zero in the far field and become singular at the concentrated source. Additionally, the contours exhibit rapid changes near the point fluid source but display gradual variations at a distance from it. These findings highlight the intricate behavior of the system under point liquid loading, offering valuable insights for further research and practical applications.
文摘The search for mechanical properties of materials reached a highly acclaimed level, when indentations could be analysed on the basis of elastic theory for hardness and elastic modulus. The mathematical formulas proved to be very complicated, and various trials were published between the 1900s and 2000s. The development of indentation instruments and the wish to make the application in numerous steps easier, led in 1992 to trials with iterations by using relative values instead of absolute ones. Excessive iterations of computers with 3 + 8 free parameters of the loading and unloading curves became possible and were implemented into the instruments and worldwide standards. The physical formula for hardness was defined as force over area. For the conical, pyramidal, and spherical indenters, one simply took the projected area for the calculation of the indentation depth from the projected area, adjusted it later by the iterations with respect to fused quartz or aluminium as standard materials, and called it “contact height”. Continuously measured indentation loading curves were formulated as loading force over depth square. The unloading curves after release of the indenter used the initial steepness of the pressure relief for the calculation of what was (and is) incorrectly called “Young’s modulus”. But it is not unidirectional. And for the spherical indentations’ loading curve, they defined the indentation force over depth raised to 3/2 (but without R/h correction). They till now (2025) violate the energy law, because they use all applied force for the indenter depth and ignore the obvious sidewise force upon indentation (cf. e.g. the wood cleaving). The various refinements led to more and more complicated formulas that could not be reasonably calculated with them. One decided to use 3 + 8 free-parameter iterations for fitting to the (poor) standards of fused quartz or aluminium. The mechanical values of these were considered to be “true”. This is till now the worldwide standard of DIN-ISO-ASTM-14577, avoiding overcomplicated formulas with their complexity. Some of these are shown in the Introduction Section. By doing so, one avoided the understanding of indentation results on a physical basis. However, we open a simple way to obtain absolute values (though still on the blackbox instrument’s unsuitable force calibration). We do not iterate but calculate algebraically on the basis of the correct, physically deduced exponent of the loading force parabolas with h3/2 instead of false “h2” (for the spherical indentation, there is a calotte-radius over depth correction), and we reveal the physical errors taken up in the official worldwide “14577-Standard”. Importantly, we reveal the hitherto fully overlooked phase transitions under load that are not detectable with the false exponent. Phase-transition twinning is even present and falsifies the iteration standards. Instead of elasticity theory, we use the well-defined geometry of these indentations. By doing so, we reach simple algebraically calculable formulas and find the physical indentation hardness of materials with their onset depth, onset force and energy, as well as their phase-transition energy (temperature dependent also its activation energy). The most important phase transitions are our absolute algebraically calculated results. The now most easily obtained phase transitions under load are very dangerous because they produce polymorph interfaces between the changed and the unchanged material. It was found and published by high-enlargement microscopy (5000-fold) that these trouble spots are the sites for the development of stable, 1 to 2 µm long, micro-cracks (stable for months). If however, a force higher than the one of their formation occurs to them, these grow to catastrophic crash. That works equally with turbulences at the pickle fork of airliners. After the publication of these facts and after three fatal crashing had occurred in a short sequence, FAA (Federal Aviation Agency) reacted by rechecking all airplanes for such micro cracks. These were now found in a new fleet of airliners from where the three crashed ones came. These were previously overlooked. FAA became aware of that risk and grounded 290 (certainly all) of them, because the material of these did not have higher phase-transition onset and energy than other airplanes with better material. They did so despite the 14577-Standard that does not find (and thus formally forbids) phase transitions under indenter load with the false exponent on the indentation parabola. However, this “Standard” will, despite the present author’s well-founded petition, not be corrected for the next 5 years.