Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL pow...As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.展开更多
Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s...Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.展开更多
Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications d...Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.展开更多
The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy c...The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy conversion.There is an urgent need to design novel electrocatalysts with optimized OER kinetics and enhanced intrinsic activity to improve overall OER performance.Herein,one-dimensional(1D)nanocomposites with high electrocatalytic activity were developed through the deposition of CoFePBA nanocubes onto the surface of MnO_(2) nanowires.The electronic structure of the nanocomposite surface was modified,and the synergistic effects between transition metals were leveraged to enhance catalytic activity through the deposition of Prussian blue analog(PBA)nanocubes on manganese dioxide nanowires.Specifically,CoFePBA featured an open crystal structure that offiered numerous electrochemical active sites and efficient charge transfer pathways.Additionally,the synergistic interactions between Co and Fe significantly reduced the OER overpotential.Additionally,the 1D rigid MnO_(2) acted as protective armor,ensuring the stability of active sites within CoFePBA during the OER.The synthesized MnO_(2)@CoFePBA achieved an overpotential of 1.614 V at 10 mA/cm^(2) and a small Tafel slope of 94 mV/dec and demonstrated stable performance for over 200 h.This work offers new insights into the rational design of various PBA-based nanocomposites with high activity and stability.展开更多
The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculati...The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.展开更多
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method...We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.展开更多
Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are chall...Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.展开更多
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear...Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three...The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.展开更多
AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embas...AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.展开更多
The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,whic...The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.展开更多
In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,a...In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input.展开更多
Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is...Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.展开更多
Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from R...Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.展开更多
Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p ...Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.展开更多
By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture defor...By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.展开更多
This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the ...This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the energy source:2.59 g,5.83 g,and 7.13 g.Two configurations were tested:standard(full-barrel water load)and"negative 8"(partial water load).High-speed footage captured water column velocities,and Gurney models,including infinitely tamped and open-faced configurations,combined with the flight of fragment model were used to assess prediction accuracy.Results showed charge strength significantly affects water column velocity,with higher strengths yielding greater stability and velocity retention over distance.The infinitely tamped Gurney model closely predicted experimental velocities,deviating by as little as 1.4%for standard charges and 2.8% for negative 8 charges.Additionally,interesting dynamics such as a 1-2°rise in jet height and the rear overtaking the front was observed.These findings have significant implications for optimizing PAN disruptors and enhancing performance in high-velocity fluid applications and explosive breaching systems.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
文摘As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174026)。
文摘Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.
基金supported by the National Natural Science Foundation of China(No.22202065).
文摘Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.
基金supported by the National Natural Science Foundation of China(No.52371240)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy conversion.There is an urgent need to design novel electrocatalysts with optimized OER kinetics and enhanced intrinsic activity to improve overall OER performance.Herein,one-dimensional(1D)nanocomposites with high electrocatalytic activity were developed through the deposition of CoFePBA nanocubes onto the surface of MnO_(2) nanowires.The electronic structure of the nanocomposite surface was modified,and the synergistic effects between transition metals were leveraged to enhance catalytic activity through the deposition of Prussian blue analog(PBA)nanocubes on manganese dioxide nanowires.Specifically,CoFePBA featured an open crystal structure that offiered numerous electrochemical active sites and efficient charge transfer pathways.Additionally,the synergistic interactions between Co and Fe significantly reduced the OER overpotential.Additionally,the 1D rigid MnO_(2) acted as protective armor,ensuring the stability of active sites within CoFePBA during the OER.The synthesized MnO_(2)@CoFePBA achieved an overpotential of 1.614 V at 10 mA/cm^(2) and a small Tafel slope of 94 mV/dec and demonstrated stable performance for over 200 h.This work offers new insights into the rational design of various PBA-based nanocomposites with high activity and stability.
基金Funded by the National Key R&D Program of China(No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2022212004)the National Natural Science Foundation of China(No.52171045),and the Joint Fund(No.8091B022108)。
文摘The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.
基金supported by the National Natural Science Foundation of China(Grant No.11974420).
文摘We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12393831 and 12088101).
文摘Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.
文摘Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Zhejiang Provincial Natural Science Foundation of China for Young Scholars(Project No.:LQ20A020009)National College Students’Innovation and Entrepreneurship Training Program(Project No.:202311842014X)。
文摘The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.
基金Supported by Beijing Natural Science Foundation from Beijing Municipal Government(No.7202030).
文摘AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.
基金supported by the National Natural Science Foundation of China(Nos.52364044 and 52204364)Central Guidance on Local Science and Technology Development Fund Projects of Inner Mongolia Autonomous Region(No.2022ZY0090)Basic Scientific Research Business Expenses of Colleges and Universities in Inner Mongolia Autonomous Region(Nos.2023QNJS011 and 0406082226).
文摘The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.
基金supported by the National Key Research and Development Program of China(No.2022YFB4600900).
文摘In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92477205)。
文摘Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
基金supported by the National Natural Science Foundation of China(Nos.22207036,22277034,22477034,and 22107033)Interdisciplinary Research Program of Huazhong University of Science and Technology(No.2023JCYJ037)International Cooperation Project of Hubei Provincial Key R&D Plan(No.2023EHA040)。
文摘Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.
基金supported by the National Natural Science Foundation of China(Grant no.52463025,and 52062035)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Grant no.20213BCJ22056)+2 种基金the Key R&D Program of Jiangxi Province(Grant no.20223BBE51028)the Jiangxi Province Key Laboratory of Lithium-ion Battery Materials and Application(2024SSY05202)the Jiangxi Province Graduate Innovation Special Fund Project(YC2023-B004)。
文摘Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.
基金Supported by the Joint Fund Key Program of the National Natural Science Foundation of China(U21B2069)Key Research and Development Program of Shandong Province(2022CXGC020407)Basic Science Center Program of the National Natural Science Foundation of China(52288101)。
文摘By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.
基金supported and funded internally through Dr. Catherine Johnson's research funds at Missouri S&T
文摘This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the energy source:2.59 g,5.83 g,and 7.13 g.Two configurations were tested:standard(full-barrel water load)and"negative 8"(partial water load).High-speed footage captured water column velocities,and Gurney models,including infinitely tamped and open-faced configurations,combined with the flight of fragment model were used to assess prediction accuracy.Results showed charge strength significantly affects water column velocity,with higher strengths yielding greater stability and velocity retention over distance.The infinitely tamped Gurney model closely predicted experimental velocities,deviating by as little as 1.4%for standard charges and 2.8% for negative 8 charges.Additionally,interesting dynamics such as a 1-2°rise in jet height and the rear overtaking the front was observed.These findings have significant implications for optimizing PAN disruptors and enhancing performance in high-velocity fluid applications and explosive breaching systems.