Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of compreh...This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.展开更多
In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime...Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.展开更多
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r...Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.展开更多
Sun T,Chen R,Liu J,Zhou Y.Current progress and future perspectives in total‐body PET imaging,part I:data processing and analysis.iRADIOLOGY.2024;2(2):173-90.On page 178,Section 3.2,the text reads:“Muller et al.[49]u...Sun T,Chen R,Liu J,Zhou Y.Current progress and future perspectives in total‐body PET imaging,part I:data processing and analysis.iRADIOLOGY.2024;2(2):173-90.On page 178,Section 3.2,the text reads:“Muller et al.[49]used deep learning to denoise dynamic PET data from a Quadra scanner and investigated…”This should be corrected to:“Muller et al.[49]used deep learning to denoise dynamic PET data from a PennPET Explorer scanner and investigated…”We apologize for this error.展开更多
In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m...On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.展开更多
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi...A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.展开更多
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS...Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.展开更多
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa...Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.展开更多
The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that t...The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.展开更多
DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without...DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches.展开更多
In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Exis...In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its ...Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations.Te availability of annotated datasets is limited,and preprocessing of the noisy content is even more challenging,sometimes resulting in the removal of important cues of sentiment from the input.To overcome such problems,this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy.Specifcally,it uses the CAMeLBERT model fnetuned for the Multi-Domain Arabic Resources for Sentiment Analysis(MARSA)dataset containing more than 56,000 manually annotated tweets annotated across political,social,sports,and technology domains.Te proposed method avoids extensive use of preprocessing and shows that raw data provides better results because they tend to retain more linguistic features.Te fne-tuned CAMeLBERT model produces state-of-the-art accuracy of 92%,precision of 91.7%,recall of 92.3%,and F1-score of 91.5%,outperforming standard machine learning models and ensemble-based/deep learning techniques.Our performance comparisons against other pre-trained models,namely AraBERTv02-twitter and MARBERT,show that transformer-based architectures are consistently the best suited when dealing with noisy Arabic texts.Tis work leads to a strong remedy for the problems in Arabic sentiment analysis and provides recommendations on easy tuning of the pre-trained models to adapt to challenging linguistic features and domain-specifc tasks.展开更多
As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the...As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.展开更多
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit...The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.展开更多
Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current c...Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.展开更多
In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of...In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of infor-mation and insights,particularly when examining the temporal aspect,allowing the extraction of relevant and non-obvious knowledge.The triadic concept analysis theory has been proposed to describe the ternary re-lationships between objects,attributes,and conditions.In this study,we present a methodology for exploring longitudinal health databases using both the triadic theory and triadic rules,which are similar to association rules but incorporate temporal relations.Through four case studies,we demonstrate the potential of applying triadic analysis to longitudinal databases to identify risk patterns,enhance decision-making processes,and deepen our understanding of temporal dynamics.These findings suggest a promising approach for describing longitudinal databases and obtaining insights to improve clinical decision-support systems for disease treatment.展开更多
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
文摘This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
文摘Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.
文摘Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.
文摘Sun T,Chen R,Liu J,Zhou Y.Current progress and future perspectives in total‐body PET imaging,part I:data processing and analysis.iRADIOLOGY.2024;2(2):173-90.On page 178,Section 3.2,the text reads:“Muller et al.[49]used deep learning to denoise dynamic PET data from a Quadra scanner and investigated…”This should be corrected to:“Muller et al.[49]used deep learning to denoise dynamic PET data from a PennPET Explorer scanner and investigated…”We apologize for this error.
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
文摘On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.
文摘A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.
文摘Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.
文摘Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.
基金supported by the Jilin Provincial Scientific and Technological Development Program(YDZJ202401572ZYTS)the Overseas Expertise Introduction Project for Discipline Innovation of China(D18012)+1 种基金Education Department of Jilin Province(JJKH20240678KJ)the National Natural Science Foundation of China(22122904,22109155,22379136)。
文摘The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.
文摘DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches.
基金supported by the Global Research and Innovation Platform Fund for Scientific Big Data Transmission(Grant No.241711KYSB20180002)National Key Research and Development Project of China(Grant No.2019YFB1405801).
文摘In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504).
文摘Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations.Te availability of annotated datasets is limited,and preprocessing of the noisy content is even more challenging,sometimes resulting in the removal of important cues of sentiment from the input.To overcome such problems,this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy.Specifcally,it uses the CAMeLBERT model fnetuned for the Multi-Domain Arabic Resources for Sentiment Analysis(MARSA)dataset containing more than 56,000 manually annotated tweets annotated across political,social,sports,and technology domains.Te proposed method avoids extensive use of preprocessing and shows that raw data provides better results because they tend to retain more linguistic features.Te fne-tuned CAMeLBERT model produces state-of-the-art accuracy of 92%,precision of 91.7%,recall of 92.3%,and F1-score of 91.5%,outperforming standard machine learning models and ensemble-based/deep learning techniques.Our performance comparisons against other pre-trained models,namely AraBERTv02-twitter and MARBERT,show that transformer-based architectures are consistently the best suited when dealing with noisy Arabic texts.Tis work leads to a strong remedy for the problems in Arabic sentiment analysis and provides recommendations on easy tuning of the pre-trained models to adapt to challenging linguistic features and domain-specifc tasks.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the National Science Foundation of China 12422303,12403024,12222301,12173007,and 12261141690the Postdoctoral Fellowship Program of CPSF under grant Number GZB20240731the Young Data Scientist Project of the National Astronomical Data Center,and the China Post-doctoral Science Foundation No.2023M743447support from the NSFC through grant No.12303039 and No.12261141690.
文摘As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.
基金by the National Key Research and Development Program of China(2023YFC3303701-02 and 2024YFC3306701)the National Natural Science Foundation of China(T2425014 and 32270667)+3 种基金the Natural Science Foundation of Fujian Province of China(2023J06013)the Major Project of the National Social Science Foundation of China granted to Chuan-Chao Wang(21&ZD285)Open Research Fund of State Key Laboratory of Genetic Engineering at Fudan University(SKLGE-2310)Open Research Fund of Forensic Genetics Key Laboratory of the Ministry of Public Security(2023FGKFKT07).
文摘The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.
基金supported by the Quzhou Science and Technology Bureau Project(2023D023,2023D030,2023D002,and2024D028)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LZY23B030002)+3 种基金the Shijiazhuang Shangtai Technology Co.,Ltd.Hebei Provincial Department of Science and Technology(24291101Z)the International Cooperation Projects of Sichuan Provincial Department of Science and Technology(2021YFH0126)the Sichuan Provincial Science and Technology Department's key research project(2023YFG0203)。
文摘Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.
文摘In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of infor-mation and insights,particularly when examining the temporal aspect,allowing the extraction of relevant and non-obvious knowledge.The triadic concept analysis theory has been proposed to describe the ternary re-lationships between objects,attributes,and conditions.In this study,we present a methodology for exploring longitudinal health databases using both the triadic theory and triadic rules,which are similar to association rules but incorporate temporal relations.Through four case studies,we demonstrate the potential of applying triadic analysis to longitudinal databases to identify risk patterns,enhance decision-making processes,and deepen our understanding of temporal dynamics.These findings suggest a promising approach for describing longitudinal databases and obtaining insights to improve clinical decision-support systems for disease treatment.