期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Material Selection for Hawsers for a Side-by-side Offloading System
1
作者 Jiayu Qian Liping Sun Linfeng Song 《Journal of Marine Science and Application》 2014年第4期449-454,共6页
In order to provide a theoretical guide for choosing the material for the hawsers for the FPSO side-by-side offloading system, which is moored by the yoke system, the 3D potential flow theory and full coupled time-dom... In order to provide a theoretical guide for choosing the material for the hawsers for the FPSO side-by-side offloading system, which is moored by the yoke system, the 3D potential flow theory and full coupled time-domain analysis are presented to study the dynamic response of the offloading system. The MingZhu FPSO offloading system in the field BZ25-1 is simulated here; and four different characteristic fiber ropes are used as the material for the hawsers. To acquire an accurate hawser line tension, the polynomial fitting method is used to calculate the nonlinear stiffness of the hawsers. By comparing the hawser lines' tension and the relative motion between the FPSO and the shuttle tanker, a suitable material for the hawser lines is chosen and discussed in this paper. The results indicate that the nonlinear stiffness characteristic of the fiber rope has a small effect on the relative motion of the vessels, but the hawser lines' tension is greatly influenced by the different characteristics of the fiber ropes. The hawser lines' tension with nonlinear stiffness is in accordance with the one with the upper and lower bound linear stiffness, which proves this method of fitting the fiber ropes' nonlinear stiffness is reasonable and reliable. 展开更多
关键词 FPSO offloading system side-by-side offloading ststem hydrodynamic interaction hawser material nonlinear stiffness
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
2
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
RS-DRL-based offloading policy and UAV trajectory design in F-MEC systems
3
作者 Yulu Yang Han Xu +3 位作者 Zhu Jin Tiecheng Song Jing Hu Xiaoqin Song 《Digital Communications and Networks》 2025年第2期377-386,共10页
For better flexibility and greater coverage areas,Unmanned Aerial Vehicles(UAVs)have been applied in Flying Mobile Edge Computing(F-MEC)systems to offer offloading services for the User Equipment(UEs).This paper consi... For better flexibility and greater coverage areas,Unmanned Aerial Vehicles(UAVs)have been applied in Flying Mobile Edge Computing(F-MEC)systems to offer offloading services for the User Equipment(UEs).This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices(DRDs).Considering the fairness of DRDs,a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs,the offloading policy and serving time under the constraint of the UAVs'energy capacity.To solve the above non-convex problem,we first model the service process as a Markov Decision Process(MDP)with the Reward Shaping(RS)technique,and then propose a Deep Reinforcement Learning(DRL)based algorithm to find the optimal solution for the MDP.Simulations show that the proposed RS-DRL algorithm is valid and effective,and has better performance than the baseline algorithms. 展开更多
关键词 Flying mobile edge computing Task offloading Reward shaping Deep reinforcement learning
在线阅读 下载PDF
UAV-assisted cooperative offloading energy efficiency system for mobile edge computing 被引量:2
4
作者 Xue-Yong Yu Wen-Jin Niu +1 位作者 Ye Zhu Hong-Bo Zhu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期16-24,共9页
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat... Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes. 展开更多
关键词 Computation offloading Internet of things(IoT) Mobile edge computing(MEC) Block coordinate descent(BCD)
在线阅读 下载PDF
IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems 被引量:1
5
作者 Dinesh Mavaluru Chettupally Anil Carie +4 位作者 Ahmed I.Alutaibi Satish Anamalamudi Bayapa Reddy Narapureddy Murali Krishna Enduri Md Ezaz Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1487-1503,共17页
In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises e... In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings. 展开更多
关键词 Internet of Things edge computing offloading NOMA
在线阅读 下载PDF
Joint computation offloading and parallel scheduling to maximize delay-guarantee in cooperative MEC systems
6
作者 Mian Guo Mithun Mukherjee +3 位作者 Jaime Lloret Lei Li Quansheng Guan Fei Ji 《Digital Communications and Networks》 SCIE CSCD 2024年第3期693-705,共13页
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess... The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC. 展开更多
关键词 Edge computing Computation offloading Parallel scheduling Mobile-edge cooperation Delay guarantee
在线阅读 下载PDF
UAV-Assisted Multi-Object Computing Offloading for Blockchain-Enabled Vehicle-to-Everything Systems
7
作者 Ting Chen Shujiao Wang +3 位作者 Xin Fan Xiujuan Zhang Chuanwen Luo Yi Hong 《Computers, Materials & Continua》 SCIE EI 2024年第12期3927-3950,共24页
This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)systems.Due to the presence of an eavesdropper(Eve),the system’s com-mu... This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)systems.Due to the presence of an eavesdropper(Eve),the system’s com-munication links may be insecure.This paper proposes deploying an intelligent reflecting surface(IRS)on the UAV to enhance the communication performance of mobile vehicles,improve system flexibility,and alleviate eavesdropping on communication links.The links for uploading task data from vehicles to a base station(BS)are protected by IRS-assisted physical layer security(PLS).Upon receiving task data,the computing resources provided by the edge computing servers(MEC)are allocated to vehicles for task execution.Existing blockchain-based computation offloading schemes typically focus on improving network performance,such as minimizing energy consumption or latency,while neglecting the Gas fees for computation offloading and the costs required for MEC computation,leading to an imbalance between service fees and resource allocation.This paper uses a utility-oriented computation offloading scheme to balance costs and resources.This paper proposes alternating phase optimization and power optimization to optimize the energy consumption,latency,and communication secrecy rate,thereby maximizing the weighted total utility of the system.Simulation results demonstrate a notable enhancement in the weighted total system utility and resource utilization,thereby corroborating the viability of our approach for practical applications. 展开更多
关键词 UAV intelligent reflecting surface vehicle to everything task offloading phase shift optimization
在线阅读 下载PDF
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
8
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Multi-Leader Multi-Follower Stackelberg Game-Based Offloading Strategy for Blockchain-Enabled DT-HetVNets
9
作者 Zhao Haitao Yang Dexian +2 位作者 Wang Qin Zhu Hongbo Cai Yan 《China Communications》 2025年第11期223-241,共19页
Recent advances in integrating Digital Twins(DTs)with Heterogeneous Vehicular Networks(HetVNets)enhance decision-making and improve network performance.Additionally,developments in Mobile Edge Computing(MEC)support th... Recent advances in integrating Digital Twins(DTs)with Heterogeneous Vehicular Networks(HetVNets)enhance decision-making and improve network performance.Additionally,developments in Mobile Edge Computing(MEC)support the computational demands of DTs.However,the decentralized nature of MEC systems introduces security challenges and traditional HetVNets fail to efficiently integrate diverse computing and network resources,limiting their ability to handle services for vehicles.This paper presents a novel service request offloading framework for DT-HetVNets to address these issues.In this framework,we design utility functions for vehicles and infrastructures to maximize satisfaction of their requirements through data synchronization and decision-making between DTs and entities.Furthermore,we propose a new honestly based distributed PoA(HDPoA)via scalable work.The interactions between infrastructures and vehicles are modeled as a multi-leader multi-follower(MLMF)game,and we develop a dynamic iterative algorithm to achieve the Nash equilibrium(NE)of the proposed game-theoretic model.Experimental results validate the effectiveness and accuracy of our scheme. 展开更多
关键词 blockchain digital twins service offloading stackelberg game vehicular networks
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
10
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Terminal Multitask Parallel Offloading Algorithm Based on Deep Reinforcement Learning
11
作者 Zhang Lincong Li Yang +2 位作者 Zhao Weinan Liu Xiangyu Guo Lei 《China Communications》 2025年第7期30-43,共14页
The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of use... The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of users,but existing technologies rigidly assume that there is only one task to be offloaded in each time slot at the terminal.In practical scenarios,there are often numerous computing tasks to be executed at the terminal,leading to a cumulative delay for subsequent task offloading.Therefore,the efficient processing of multiple computing tasks on the terminal has become highly challenging.To address the lowlatency offloading requirements for multiple computational tasks on terminal devices,we propose a terminal multitask parallel offloading algorithm based on deep reinforcement learning.Specifically,we first establish a mobile edge computing system model consisting of a single edge server and multiple terminal users.We then model the task offloading decision problem as a Markov decision process,and solve this problem using the Dueling Deep-Q Network algorithm to obtain the optimal offloading strategy.Experimental results demonstrate that,under the same constraints,our proposed algorithm reduces the average system latency. 展开更多
关键词 deep reinforcement learning mobile edge computing multitask parallel offloading task offloading
在线阅读 下载PDF
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
12
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin Multi-Agent Deep Reinforcement Learning(MADRL) Task offloading PIPELINING Delay-aware
在线阅读 下载PDF
Task offloading delay minimization in vehicular edge computing based on vehicle trajectory prediction
13
作者 Feng Zeng Zheng Zhang Jinsong Wu 《Digital Communications and Networks》 2025年第2期537-546,共10页
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements o... In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays. 展开更多
关键词 Vehicular edge computing Task offloading Vehicle trajectory prediction Delay minimization Bi-LSTM model
在线阅读 下载PDF
Improved PPO-Based Task Offloading Strategies for Smart Grids
14
作者 Qian Wang Ya Zhou 《Computers, Materials & Continua》 2025年第8期3835-3856,共22页
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus... Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments. 展开更多
关键词 Smart grid task offloading deep reinforcement learning improved PPO algorithm edge computing
在线阅读 下载PDF
Reliable Task Offloading for 6G-Based IoT Applications
15
作者 Usman Mahmood Malik Muhammad Awais Javed +1 位作者 Ahmad Naseem Alvi Mohammed Alkhathami 《Computers, Materials & Continua》 2025年第2期2255-2274,共20页
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will ... Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads. 展开更多
关键词 6G IOT task offloading fog computing
在线阅读 下载PDF
A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles
16
作者 Aishwarya Rajasekar Vetriselvi Vetrian 《Computer Modeling in Engineering & Sciences》 2025年第4期225-254,共30页
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap... The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively. 展开更多
关键词 Internet of vehicles vehicular ad-hoc networks(VANET) multiaccess edge computing task offloading graph neural networks differential privacy
在线阅读 下载PDF
DRL-Based Cross-Regional Computation Offloading Algorithm
17
作者 Lincong Zhang Yuqing Liu +2 位作者 Kefeng Wei Weinan Zhao Bo Qian 《Computers, Materials & Continua》 2026年第1期901-918,共18页
In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network e... In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads. 展开更多
关键词 Edge computing computational task offloading deep reinforcement learning D3QN device-to-device communication system latency optimization
在线阅读 下载PDF
Reinforcement learning-enabled swarm intelligence method for computation task offloading in Internet-of-Things blockchain
18
作者 Zhuo Chen Jiahuan Yi +1 位作者 Yang Zhou Wei Luo 《Digital Communications and Networks》 2025年第3期912-924,共13页
Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)du... Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms. 展开更多
关键词 Blockchain Task offloading Swarm intelligence Reinforcement learning
在线阅读 下载PDF
Joint offloading decision and resource allocation in vehicular edge computing networks
19
作者 Shumo Wang Xiaoqin Song +3 位作者 Han Xu Tiecheng Song Guowei Zhang Yang Yang 《Digital Communications and Networks》 2025年第1期71-82,共12页
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a... With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay. 展开更多
关键词 Computation offloading Resource allocation Vehicular edge computing Potential game Multi-agent deep deterministic policy gradient
在线阅读 下载PDF
AMulti-Objective Joint Task Offloading Scheme for Vehicular Edge Computing
20
作者 Yiwei Zhang Xin Cui Qinghui Zhao 《Computers, Materials & Continua》 2025年第8期2355-2373,共19页
The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial veh... The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks. 展开更多
关键词 Vehicular edge computing cooperative game theory multi-objective optimization computation offloading
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部