期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment 被引量:1
1
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 Unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
在线阅读 下载PDF
A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8 被引量:1
2
作者 Zongdong Du Xuefeng Feng +2 位作者 Feng Li Qinglong Xian Zhenhong Jia 《Computers, Materials & Continua》 SCIE EI 2024年第11期2607-2627,共21页
The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightwei... The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications. 展开更多
关键词 Unmanned aerial vehicle obstacle detection obstacle avoidance algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部