期刊文献+
共找到3,552篇文章
< 1 2 178 >
每页显示 20 50 100
基于ObjectNess BING的海面多舰船目标检测 被引量:8
1
作者 郭少军 沈同圣 +1 位作者 徐健 马新星 《系统工程与电子技术》 EI CSCD 北大核心 2016年第1期14-20,共7页
将一幅图像按照一个目标的大小进行缩放,然后计算其梯度特征,再对梯度特征进行标准化,二值化能够极大地提高目标候选区域的选择和检测计算效率,减少耗时。由于对海上舰船目标的检测是具有丰富角点的人造目标,对ObjectNess二值化标准梯... 将一幅图像按照一个目标的大小进行缩放,然后计算其梯度特征,再对梯度特征进行标准化,二值化能够极大地提高目标候选区域的选择和检测计算效率,减少耗时。由于对海上舰船目标的检测是具有丰富角点的人造目标,对ObjectNess二值化标准梯度特征(binarized normed gradients,BING)方法中的目标候选区域提取算法进行改进,使其能够更加快速地进行候选区域的选择并保持较高的检测率。分析了海上多舰船目标的图像特征,提出了利用角点确定目标的候选基点,再利用ObjectNess BING检测模型训练获得的多目标尺寸进行候选区域的选择,对互联网上下载的多幅多舰船图像进行处理的结果表明,算法能够有效减少候选目标区域的数量并保持较高的检测概率。 展开更多
关键词 objectness二值化标准梯度特征 角点检测 模板训练 海面舰船 目标检测
在线阅读 下载PDF
特征融合与objectness加强的显著目标检测 被引量:5
2
作者 王娇娇 刘政怡 李辉 《计算机工程与应用》 CSCD 北大核心 2017年第2期195-200,270,共7页
显著目标检测是计算机视觉的重要组成部分,目的是检测图像中最吸引人眼的目标区域。针对显著检测中特征的适应性不足以及当前一些算法出现多检与漏检的问题,提出从"目标在哪儿"与"背景在哪儿"两个角度描述显著性的... 显著目标检测是计算机视觉的重要组成部分,目的是检测图像中最吸引人眼的目标区域。针对显著检测中特征的适应性不足以及当前一些算法出现多检与漏检的问题,提出从"目标在哪儿"与"背景在哪儿"两个角度描述显著性的框架,进行特征融合来提高显著目标检测的准确率。从这两个角度分别提取图像的颜色区别性特征与边界先验特征并进行特征融合,使用objectness特征加强显著性,最终得到显著图。在MSRA-1000数据集上的评估中,该算法达到平均92.4%的准确率,能和最先进算法相媲美;而在CSSD、ECSSD数据集上的实验,该算法有更高的准确率,优势明显。实验结果表明所使用的特征之间能够互相补充,互相弥补,"目标在哪儿"与"背景在哪儿"的检测框架描述图像显著性具有合理性。 展开更多
关键词 计算机视觉 显著目标检测 边界先验 颜色区别性 objectness
在线阅读 下载PDF
Objectness Region Enhancement Networks for Scene Parsing
3
作者 Xin-Yu Ou Ping Li +2 位作者 He-Fei Ling Si Liu Tian-Jiang Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期683-700,共18页
Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep ... Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning. Different from many existing methods, our method focuses on putting forward some techniques to improve the existing algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It exploits the detection module to produce object region proposals with category probability, and these regions are used to weight the parsing feature map directly. 'Extra background' category, as a specific category, is often attached to the category space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified on the Cityscapes dataset. 展开更多
关键词 objectness region enhancement black-hole filling scene parsing instance enhancement objectness region proposal
原文传递
BING: Binarized normed gradients for objectness estimation at 300fps 被引量:13
4
作者 Ming-Ming Cheng Yun Liu +3 位作者 Wen-Yan Lin Ziming Zhang Paul L.Rosin Philip H.S.Torr 《Computational Visual Media》 CSCD 2019年第1期3-20,共18页
Training a generic objectness measure to produce object proposals has recently become of significant interest. We observe that generic objects with well-defined closed boundaries can be detected by looking at the norm... Training a generic objectness measure to produce object proposals has recently become of significant interest. We observe that generic objects with well-defined closed boundaries can be detected by looking at the norm of gradients, with a suitable resizing of their corresponding image windows to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64 D feature to describe it, for explicitly training a generic objectness measure. We further show how the binarized version of this feature, namely binarized normed gradients(BING), can be used for efficient objectness estimation, which requires only a few atomic operations(e.g., add, bitwise shift, etc.). To improve localization quality of the proposals while maintaining efficiency, we propose a novel fast segmentation method and demonstrate its effectiveness for improving BING's localization performance, when used in multithresholding straddling expansion(MTSE) postprocessing. On the challenging PASCAL VOC2007 dataset, using 1000 proposals per image and intersectionover-union threshold of 0.5, our proposal method achieves a 95.6% object detection rate and 78.6% mean average best overlap in less than 0.005 second per image. 展开更多
关键词 OBJECT proposals objectness VISUAL ATTENTION CATEGORY agnostic proposals
原文传递
Rising frequency of ozone-favorable synoptic weather patterns contributes to 2015-2022 ozone increase in Guangzhou 被引量:2
5
作者 Nanxi Liu Guowen He +8 位作者 Haolin Wang Cheng He Haofan Wang Chenxi Liu Yiming Wang Haichao Wang Lei Li Xiao Lu Shaojia Fan 《Journal of Environmental Sciences》 2025年第2期502-514,共13页
Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examine... Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examined.In this study,we apply two widely-used objective methods,the self-organizing map(SOM)and K-means clustering analysis,to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022.We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities.In the case of classifying six SWPs,the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods,and the difference in themean frequency of each SWP is less than 7%.The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature,lower cloud cover,relative humidity,and wind speed,and stronger subsidence compared to climatology mean.We find that during 2015-2022,the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 days/year,faster than the increases in the ozone exceedance days(3.0 days/year).The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6.In particular,the significant increase in ozone-favorable SWPs in 2022,especially the Subtropical High type which typically occurs in September,is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022.Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou. 展开更多
关键词 Ozone(O_(3)) Objective weather classification methods Synoptic weather patterns Trends GUANGZHOU
原文传递
Impacts of synoptic weather patterns on Hefei's ozone in warm season and analysis of transport pathways during extreme pollution events 被引量:1
6
作者 Feng Hu Pinhua Xie +5 位作者 Jin Xu Ang Li Yinsheng Lv Zhidong Zhang Jiangyi Zheng Xin Tian 《Journal of Environmental Sciences》 2025年第10期371-384,共14页
Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and... Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and source contributions to historical EOPEs is still lacking.In this paper,the K-means clustering method is applied to identify six dominant SWPs during the warm season in the Yangtze River Delta(YRD)region from 2016 to 2022.It provides an integrated analysis of the meteorological factors affecting ozone pollution in Hefei under different SWPs.Using the WRF-FLEXPART model,the transport pathways(TPPs)and geographical sources of the near-surface air masses in Hefei during EOPEs are investigated.The results reveal that Hefei experienced the highest ozone concentration(134.77±42.82μg/m^(3)),exceedance frequency(46 days(23.23%)),and proportion of EOPEs(21 instances,47.7%)under the control of peripheral subsidence of typhoon(Type 5).Regional southeast winds correlated with the ozone pollution in Hefei.During EOPEs,a high boundary layer height,solar radiation,and temperature;lowhumidity and cloud cover;and pronounced subsidence airflow occurred over Hefei and the broader YRD region.The East-South(E_S)patterns exhibited the highest frequency(28 instances,65.11%).Regarding the TPPs and geographical sources of the near-surface air masses during historical EOPEs.The YRD was the main source for land-originating air masses under E_S patterns(50.28%),with Hefei,southern Anhui,southern Jiangsu,and northern Zhejiang being key contributors.These findings can help improve ozone pollution early warning and control mechanisms at urban and regional scales. 展开更多
关键词 OZONE Objective weather classification Transport pathway Source attribution Hefei
原文传递
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
7
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
8
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
在线阅读 下载PDF
A Verification Theorem for Feedback Nash Equilibrium in Multiple-Player Nonzero-Sum Impulse Game 被引量:1
9
作者 Ruihai Li Yaoyao Tan +1 位作者 Xiaojie Su Jiangshuai Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期648-650,共3页
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate... Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy. 展开更多
关键词 impulse game feedback Nash equilibrium multiple player feedback nash equilibrium strategy impulse game problem nonzero sum modified objective function impulse controlsour
在线阅读 下载PDF
DCA-YOLO:Detection Algorithm for YOLOv8 Pulmonary Nodules Based on Attention Mechanism Optimization 被引量:1
10
作者 SONG Yongsheng LIU Guohua 《Journal of Donghua University(English Edition)》 2025年第1期78-87,共10页
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially... Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent. 展开更多
关键词 pulmonary nodule YOLOv8 network object detection deformable convolution atrous spatial pyramid pooling(ASPP) coordinate attention(CA)mechanism
在线阅读 下载PDF
Transforming Education with Photogrammetry:Creating Realistic 3D Objects for Augmented Reality Applications
11
作者 Kaviyaraj Ravichandran Uma Mohan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期185-208,共24页
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed... Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector. 展开更多
关键词 Augmented reality education immersive learning 3D object creation PHOTOGRAMMETRY and StructureFromMotion
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
12
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
MSFNet:A Network for Lunar Impact Crater Detection Based on Enhanced Feature Fusion with Digital Elevation Model
13
作者 HE Weidong LAI Jialong +3 位作者 ZHONG Zhicheng CUI Feifei XU Yi ZHANG Xiaoping 《深空探测学报(中英文)》 北大核心 2025年第2期190-204,共15页
Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalo... Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalogs.In this work,we integrate Digital Elevation Model(DEM)data to construct a high-quality dataset enriched with slope information,enabling a detailed analysis of crater features and effectively improving detection performance in complex terrains and low-contrast areas.Based on this foundation,we propose a novel two-stage detection network,MSFNet,which leverages multi-scale adaptive feature fusion and multisize ROI pooling to enhance the recognition of craters across various scales.Experimental results demonstrate that MSFNet achieves an F1 score of 74.8%on Test Region1 and a recall rate of 87%for craters with diameters larger than 2 km.Moreover,it shows exceptional performance in detecting sub-kilometer craters by successfully identifying a large number of high-confidence,previously unlabeled targets with a low false detection rate confirmed through manual review.This approach offers an efficient and reliable deep learning solution for lunar impact crater detection. 展开更多
关键词 object detection deep learning impact crater DEM
在线阅读 下载PDF
The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
14
作者 XU Hui-Lin XI Huan-Jun +4 位作者 DUAN Tao LI Jing LI Dan-Dan WANG Kai ZHU Chun-Yan 《生物化学与生物物理进展》 北大核心 2025年第1期223-232,共10页
Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that... Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD. 展开更多
关键词 ATTENTION autism spectrum disorder perceptual object topological perception
原文传递
Fast Object Perception in The Subcortical Pathway:a Commentary on Wang et al.’s Paper in Human Brain Mapping(2023)
15
作者 MA Hao-Yun WEI Yu-Yin HU Li-Ping 《生物化学与生物物理进展》 北大核心 2025年第7期1904-1908,共5页
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio... The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction. 展开更多
关键词 transcranial magnetic stimulation(TMS) subcortical pathway magnocellular pathway topological property object perception
原文传递
Study on Color Difference of Color Reproduction of 3D Objects
16
作者 GU Chong DENG Yi-qiang 《印刷与数字媒体技术研究》 北大核心 2025年第4期33-38,69,共7页
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a... To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB. 展开更多
关键词 Color difference formula 3D objects Light source Gray scale Normalized residual sum of squares
在线阅读 下载PDF
告读作者
17
《口腔医学研究》 北大核心 2025年第3期219-219,共1页
《口腔医学研究》从2016年1期开始,为每篇刊出文章标注中文DOI号。DOI是Digital Object Identifier的英文缩写,是国际通用的数字对象标识符。它被誉为“互联网上的条形码”,是互联网数字资源的身份证及唯一编码。同时DOI系统是一套完整... 《口腔医学研究》从2016年1期开始,为每篇刊出文章标注中文DOI号。DOI是Digital Object Identifier的英文缩写,是国际通用的数字对象标识符。它被誉为“互联网上的条形码”,是互联网数字资源的身份证及唯一编码。同时DOI系统是一套完整的国际服务体系,提供DOI的注册、解析及增值服务。 展开更多
关键词 条形码 口腔医学 DOI 数字对象标识符 增值服务 身份证 OBJECT 互联网
在线阅读 下载PDF
DI-YOLOv5:An Improved Dual-Wavelet-Based YOLOv5 for Dense Small Object Detection
18
作者 Zi-Xin Li Yu-Long Wang Fei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期457-459,共3页
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens... Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging. 展开更多
关键词 small objects receptive fields feature maps detection dense small objects object detection dense objects
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view
19
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing Object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Bidirectional target tracking model for aircraft structural fatigue crack length monitoring
20
作者 Shuaishuai LYU Jiaxin LI +2 位作者 Yezi WANG Yu YANG Yaguo LEI 《Chinese Journal of Aeronautics》 2025年第8期388-398,共11页
Crack length measurement algorithms based on computer vision have shown promising engineering application prospects in the field of aircraft fatigue crack monitoring.However,due to the complexity of the monitoring env... Crack length measurement algorithms based on computer vision have shown promising engineering application prospects in the field of aircraft fatigue crack monitoring.However,due to the complexity of the monitoring environment,the subtle visual features of small fatigue cracks,and the impact of structural elastic deformation,directly applying object segmentation algorithms often results in significant measurement errors.Therefore,this paper proposes a high-precision crack length measurement method based on Bidirectional Target Tracking Model(Bi2TM),which integrates crack tip localization,interference identification,and length compensation.First,a general object segmentation model is used to perform rough crack segmentation.Then,the Bi2TM network,combined with the visual features of the structure in different stress states,is employed to track the bidirectional position of the crack tip in the“open”and“closed”states.This ultimately enables interference identification within the rough segmented crack region,achieving highprecision length measurement.In a high-interference environment of aircraft fatigue testing,the proposed method is used to measure 1000 crack images ranging from 1 mm to 11 mm.For more than 90%of the samples,the measurement error is less than 5 pixels,demonstrating significant advantages over the existing methods. 展开更多
关键词 Computer vision CRACK Fatigue testing Object tracking Object segmentation
原文传递
上一页 1 2 178 下一页 到第
使用帮助 返回顶部