期刊文献+
共找到153,734篇文章
< 1 2 250 >
每页显示 20 50 100
Advancing Asian Monsoon Climate Prediction under Global Change:Progress,Challenges,and Outlook
1
作者 Bin WANG Fei LIU +9 位作者 Renguang WU Qinghua DING Shaobo QIAO Juan LI Zhiwei WU Keerthi SASIKUMAR Jianping LI Qing BAO Haishan CHEN Yuhang XIANG 《Advances in Atmospheric Sciences》 2026年第1期1-29,共29页
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ... Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction. 展开更多
关键词 Asian summer monsoon monsoon climate prediction climate predictability predictability sources seasonal prediction models seasonal prediction techniques artificial intelligence
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
2
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
Predictable and Unpredictable Modes of Northern Hemisphere Atmospheric Circulation in CMIP6:Evaluation and Projections
3
作者 Kairan YING Dabang JIANG Linhao ZHONG 《Advances in Atmospheric Sciences》 2026年第1期135-156,共22页
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g... Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations. 展开更多
关键词 interannual mode of atmospheric circulation CMIP6 predictable unpredictable EVALUATION PROJECTION
在线阅读 下载PDF
Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities
4
作者 Abdullah Alourani Mehtab Alam +2 位作者 Ashraf Ali Ihtiram Raza Khan Chandra Kanta Samal 《Computers, Materials & Continua》 2026年第1期462-493,共32页
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often... The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities. 展开更多
关键词 Smart cities digital twin AI-IOT framework predictive infrastructure management edge computing reinforcement learning optimization methods federated learning urban systems modeling smart governance
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
5
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation predictION OPTIMIZATION
在线阅读 下载PDF
Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process 被引量:1
6
作者 Jie Lin Hongchi Shen +1 位作者 Tingting Pei Yan Wu 《Energy Engineering》 EI 2025年第1期331-347,共17页
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p... Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules. 展开更多
关键词 Photovoltaic modules DEGRADATION stochastic processes lifetime prediction
在线阅读 下载PDF
Model-free Predictive Control of Motor Drives:A Review 被引量:2
7
作者 Chenhui Zhou Yongchang Zhang Haitao Yang 《CES Transactions on Electrical Machines and Systems》 2025年第1期76-90,共15页
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s... Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments. 展开更多
关键词 Model predictive control Motor drives Parameter robustness Model-free predictive control
在线阅读 下载PDF
Therapeutic effect of mifepristone combined with misoprostol in early missed miscarriage and prediction of incomplete abortion 被引量:2
8
作者 Bai Xue Li Tianjie Lin Qing 《Asian pacific Journal of Reproduction》 2025年第2期77-83,共7页
Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values pred... Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values predictive of incomplete abortion requiring surgical intervention.Methods:We retrospectively analyzed a cohort of 702 women diagnosed with first-trimester missed miscarriage between January 2020 and May 2023.Demographic characteristics and ultrasound parameters were systematically recorded.Receiver operating characteristic(ROC)curve analysis was performed to establish optimal sonographic cutoff values for predicting incomplete abortion requiring surgical intervention.Results:146 patients received medical treatment(mifepristone and misoprostol)and 556 underwent surgical curettage.At the 1-month follow-up,the medical group showed significantly greater endometrial thickness and longer postoperative bleeding duration than the surgical group(P<0.05).The menstrual volume reduction rate(23.56%)was significantly lower in the medical group than in the surgical group.The incomplete abortion rate was higher in the medical group(17.12%,25/146)than in the surgical group(2.88%,16/556).Among the medical group,14 patients(9.59%)required curettage due to incomplete abortion,while 11 cases resolved spontaneously after prolonged medication.ROC curve analysis identified two cut-off values indicating the need for surgical intervention:endometrial thickness>1.21 cm at 24 h post-medical abortion,and residual mass diameter>0.95 cm at 7 days post-medical abortion.Conclusions:Medical management of first-trimester missed miscarriage using mifepristone-misoprostol demonstrates comparable efficacy to surgical curettage.An endometrial thickness>1.21 cm at 24 h or residual tissue diameter>0.95 cm at 7 days post-medical abortion should prompt consideration of incomplete abortion. 展开更多
关键词 Missed miscarriage Medication abortion Incomplete miscarriage predictION
暂未订购
Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction 被引量:2
9
作者 CHENG Jiaming CHEN Wei +1 位作者 LI Lun AI Bo 《ZTE Communications》 2025年第1期3-10,共8页
Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditiona... Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions. 展开更多
关键词 massive MIMO deep learning CSI prediction CSI feedback
在线阅读 下载PDF
Multi-view BLUP:a promising solution for post-omics data integrative prediction 被引量:1
10
作者 Bingjie Wu Huijuan Xiong +3 位作者 Lin Zhuo Yingjie Xiao Jianbing Yan Wenyu Yang 《Journal of Genetics and Genomics》 2025年第6期839-847,共9页
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as... Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data. 展开更多
关键词 Multi-view data Best linear unbiased prediction Similarity function Phenotype prediction Differential evolution algorithm
原文传递
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
11
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
A Nonlinear Theory and Technology for Reducing the Uncertainty of High-Impact Ocean-Atmosphere Event Prediction 被引量:2
12
作者 Mu MU Wansuo DUAN 《Advances in Atmospheric Sciences》 2025年第10期1981-1995,共15页
In this article,our nonlinear theory and technology for reducing the uncertainties of high-impact ocean‒atmosphere event predictions,with the conditional nonlinear optimal perturbation(CNOP)method as its core,are revi... In this article,our nonlinear theory and technology for reducing the uncertainties of high-impact ocean‒atmosphere event predictions,with the conditional nonlinear optimal perturbation(CNOP)method as its core,are reviewed,and the“spring predictability barrier”problem for El Nino‒Southern Oscillation events and targeted observation issues for tropical cyclone forecasts are taken as two representative examples.Nonlinear theory reveals that initial errors of particular spatial structures,environmental conditions,and nonlinear processes contribute to significant prediction errors,whereas nonlinear technology provides a pioneering approach for reducing observational and forecast errors via targeted observations through the application of the CNOP method.Follow-up research further validates the scientific rigor of the theory in revealing the nonlinear mechanism of significant prediction errors,and relevant practical field campaigns for targeted observations verify the effectiveness of the technology in reducing prediction uncertainties.The CNOP method has achieved international recognition;furthermore,its applications further extend to ensemble forecasts for weather and climate and further enrich the nonlinear technology for reducing prediction uncertainties.It is expected that this nonlinear theory and technology will play a considerably important role in reducing prediction uncertainties for high-impact weather and climate events. 展开更多
关键词 predictABILITY optimal perturbation error growth targeted observation ensemble forecast
在线阅读 下载PDF
Research on Stock Price Prediction Method Based on the GAN-LSTM-Attention Model
13
作者 Peng Li Yanrui Wei Lili Yin 《Computers, Materials & Continua》 SCIE EI 2025年第1期609-625,共17页
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent... Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction. 展开更多
关键词 Stock price prediction generative adversarial network attention mechanism time-series prediction
在线阅读 下载PDF
Disease Burden and Trends of COPD in the Asia-Pacific Region(1990-2019)and Predictions to 2034 被引量:1
14
作者 Jing Ma Hong Mi 《Biomedical and Environmental Sciences》 2025年第5期557-570,共14页
Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 count... Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed. 展开更多
关键词 COPD ASIA-PACIFIC INCIDENCE Disease burden TRENDS prediction
暂未订购
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:4
15
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 predictABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Development and validation of a predictive model for the pathological upgrading of gastric low-grade intraepithelial neoplasia 被引量:2
16
作者 Kun-Ming Lyu Qian-Qian Chen +4 位作者 Yi-Fan Xu Yao-Qian Yuan Jia-Feng Wang Jun Wan En-Qiang Ling-Hu 《World Journal of Gastroenterology》 2025年第11期63-73,共11页
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ... BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment. 展开更多
关键词 Endoscopic resection Gastric low-grade intraepithelial neoplasia Early gastric cancer Pathological upgrade prediction model
暂未订购
Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study 被引量:1
17
作者 Ting-Feng Huang Cong Luo +9 位作者 Luo-Bin Guo Hong-Zhi Liu Jiang-Tao Li Qi-Zhu Lin Rui-Lin Fan Wei-Ping Zhou Jing-Dong Li Ke-Can Lin Shi-Chuan Tang Yong-Yi Zeng 《World Journal of Gastroenterology》 2025年第11期33-45,共13页
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat... BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability. 展开更多
关键词 Intrahepatic cholangiocarcinoma Textbook outcome Interpretable machine learning predictION PROGNOSIS
暂未订购
A disentangled generative model for improved drug response prediction in patients via sample synthesis 被引量:1
18
作者 Kunshi Li Bihan Shen +6 位作者 Fangyoumin Feng Xueliang Li Yue Wang Na Feng Zhixuan Tang Liangxiao Ma Hong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1226-1237,共12页
Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer.Computational methods have been widely explored and have become increasingly accurate in re... Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer.Computational methods have been widely explored and have become increasingly accurate in recent years.However,the clinical application of prediction methods is still in its infancy due to large discrepancies between preclinial models and patients.We present a novel disentangled synthesis transfer network(DiSyn)for drug response prediction specifically designed for transfer learning from preclinical models to clinical patients.DiSyn uses a domain separation network(DSN)to disentangle drug response related features,employs data synthesis technology to increase the sample size and iteratively trains for better feature disentanglement.DiSyn is pretrained on large-scale unlabeled cancer samples and validated by three datasets,The Cancer Genome Atlas(TCGA),Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging And moLecular Analysis 2(I-SPY2)and Novartis Institutes for Biomedical Research Patient-Derived Xenograft Encyclopedia(NIBR PDXE),achieving competitive performance with the state-of-the-art methods on cancer patients and mice.Furthermore,the application of DiSyn to thousands of breast cancer patients show the heterogeneity in drug responses and demonstrate its potential value in biomarker discovery and drug combination prediction. 展开更多
关键词 Precision medicine Transfer learning Drug response prediction
暂未订购
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:4
19
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
20
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained Networked predictive Control High Order Fully Actuated Systems
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部