Code defects can lead to software vulnerability and even produce vulnerability risks.Existing research shows that the code detection technology with text analysis can judge whether object-oriented code files are defec...Code defects can lead to software vulnerability and even produce vulnerability risks.Existing research shows that the code detection technology with text analysis can judge whether object-oriented code files are defective to some extent.However,these detection techniques are mainly based on text features and have weak detection capabilities across programs.Compared with the uncertainty of the code and text caused by the developer’s personalization,the programming language has a stricter logical specification,which reflects the rules and requirements of the language itself and the developer’s potential way of thinking.This article replaces text analysis with programming logic modeling,breaks through the limitation of code text analysis solely relying on the probability of sentence/word occurrence in the code,and proposes an object-oriented language programming logic construction method based on method constraint relationships,selecting features through hypothesis testing ideas,and construct support vector machine classifier to detect class files with defects and reduce the impact of personalized programming on detection methods.In the experiment,some representative Android applications were selected to test and compare the proposed methods.In terms of the accuracy of code defect detection,through cross validation,the proposed method and the existing leading methods all reach an average of more than 90%.In the aspect of cross program detection,the method proposed in this paper is superior to the other two leading methods in accuracy,recall and F1 value.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are ...From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes libra...The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.展开更多
Object-oriented model possesses inherent concurrency. Integration of concurrency and object-orientation is a promising new field. MPI is a message-passing standard and has been adopted by more and more systems. This p...Object-oriented model possesses inherent concurrency. Integration of concurrency and object-orientation is a promising new field. MPI is a message-passing standard and has been adopted by more and more systems. This paper proposes a novel approach to realize concurrent object-oriented programming based on Message-passing interface(MPI) in which future method communication is adopted between concurrent objects. A state behavior set is proposed to solve inheritance anomaly, and a bounded buffer is taken as an example to illustrate this proposal. The definition of ParaMPI class, which is the most important class in the concurrent class library, and implementation issues are briefly described.展开更多
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the...Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the vegetation landscapes, we proposed the lacunarity texture derived from NDVI to characterize the spatial patterns of vegetation landscapes concerning the "gappiness" or "emptiness" characteristics. The NDVI-based lacunarity texture was incorporated into object-oriented classification for improving the identification of vegetation categories, especially Torreya which was the targeted tree species in the present research. A three-level hierarchical network of image objects was defined and the proposed texture was integrated as potential sources of information in the rules base. A knowledge base of rules created by classifier C5.0 indicated that the texture could potentially be applied in object-oriented classification. It was found that the addition of such texture improved the identification of every vegetation category. The results demonstrated that the texture could characterize the spatial patterns of vegetation structures, which could be a promising approach for vegetation identification.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem....In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.展开更多
In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with...In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with the complementary slackness constraint condition.Then,we get the penalized problem of the normal nonlinear programming problem by appending the complementary slackness condition to the upper level objective with a penalty.We prove that this penalty function is exact and the penalized problem and the nonlinear bilevel programming problem have the same global optimal solution set.Finally,we propose an algorithm for the nonlinear bilevel programming problem.The numerical results show that the algorithm is feasible and efficient.展开更多
We present a new variant of penalty method, which is different from the existing penalty methods, for solving the weak linear bilevel programming problems. We then transform it into a single-level optimization problem...We present a new variant of penalty method, which is different from the existing penalty methods, for solving the weak linear bilevel programming problems. We then transform it into a single-level optimization problem using Kuhn-Tucker optimality condition and discuss the relations between them. Finally, two examples are used to illustrate the feasibility of the proposed penalty method.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are...In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.展开更多
Detecting well-known design patterns in object-oriented program source code can help maintainers understand the design of a program. Through the detection, the understandability, maintainability, and reusability of ob...Detecting well-known design patterns in object-oriented program source code can help maintainers understand the design of a program. Through the detection, the understandability, maintainability, and reusability of object-oriented programs can be improved. There are automated detection techniques;however, many existing techniques are based on static analysis and use strict conditions composed on class structure data. Hence, it is difficult for them to detect and distinguish design patterns in which the class structures are similar. Moreover, it is difficult for them to deal with diversity in design pattern applications. To solve these problems in existing techniques, we propose a design pattern detection technique using source code metrics and machine learning. Our technique judges candidates for the roles that compose design patterns by using machine learning and measurements of several metrics, and it detects design patterns by analyzing the relations between candidates. It suppresses false negatives and distinguishes patterns in which the class structures are similar. As a result of experimental evaluations with a set of programs, we confirmed that our technique is more accurate than two conventional techniques.展开更多
A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method propo...A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.展开更多
基金This work was supported by National Key RD Program of China under Grant 2017YFB0802901.
文摘Code defects can lead to software vulnerability and even produce vulnerability risks.Existing research shows that the code detection technology with text analysis can judge whether object-oriented code files are defective to some extent.However,these detection techniques are mainly based on text features and have weak detection capabilities across programs.Compared with the uncertainty of the code and text caused by the developer’s personalization,the programming language has a stricter logical specification,which reflects the rules and requirements of the language itself and the developer’s potential way of thinking.This article replaces text analysis with programming logic modeling,breaks through the limitation of code text analysis solely relying on the probability of sentence/word occurrence in the code,and proposes an object-oriented language programming logic construction method based on method constraint relationships,selecting features through hypothesis testing ideas,and construct support vector machine classifier to detect class files with defects and reduce the impact of personalized programming on detection methods.In the experiment,some representative Android applications were selected to test and compare the proposed methods.In terms of the accuracy of code defect detection,through cross validation,the proposed method and the existing leading methods all reach an average of more than 90%.In the aspect of cross program detection,the method proposed in this paper is superior to the other two leading methods in accuracy,recall and F1 value.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金The National Science Fund for Distinguished Young Scholars (No.60425206)the National Natural Science Foundation of China (No.60633010)the Natural Science Foundation of Jiangsu Province(No.BK2006094)
文摘From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘The design of finite element analysis program using object-oriented programming (OOP) techniques is presented. The objects, classes and the subclasses used in the programming are explained. The system of classes library of finite element analysis program and Windows-type Graphical User Interfaces by VC + + and its MFC are developed. The reliability, reusability and extensibility of program are enhanced. It is a reference to develop the large-scale, versatile and powerful systems of object-oriented finite element software.
文摘Object-oriented model possesses inherent concurrency. Integration of concurrency and object-orientation is a promising new field. MPI is a message-passing standard and has been adopted by more and more systems. This paper proposes a novel approach to realize concurrent object-oriented programming based on Message-passing interface(MPI) in which future method communication is adopted between concurrent objects. A state behavior set is proposed to solve inheritance anomaly, and a bounded buffer is taken as an example to illustrate this proposal. The definition of ParaMPI class, which is the most important class in the concurrent class library, and implementation issues are briefly described.
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
基金supported by the National Natural Science Foundation of China (30671212)
文摘Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the vegetation landscapes, we proposed the lacunarity texture derived from NDVI to characterize the spatial patterns of vegetation landscapes concerning the "gappiness" or "emptiness" characteristics. The NDVI-based lacunarity texture was incorporated into object-oriented classification for improving the identification of vegetation categories, especially Torreya which was the targeted tree species in the present research. A three-level hierarchical network of image objects was defined and the proposed texture was integrated as potential sources of information in the rules base. A knowledge base of rules created by classifier C5.0 indicated that the texture could potentially be applied in object-oriented classification. It was found that the addition of such texture improved the identification of every vegetation category. The results demonstrated that the texture could characterize the spatial patterns of vegetation structures, which could be a promising approach for vegetation identification.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
文摘In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.
基金Supported by the Key Project on Science and Technology of Hubei Provincial Department of Education (D20103001)
文摘In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with the complementary slackness constraint condition.Then,we get the penalized problem of the normal nonlinear programming problem by appending the complementary slackness condition to the upper level objective with a penalty.We prove that this penalty function is exact and the penalized problem and the nonlinear bilevel programming problem have the same global optimal solution set.Finally,we propose an algorithm for the nonlinear bilevel programming problem.The numerical results show that the algorithm is feasible and efficient.
基金Supported by the National Natural Science Foundation of China(11501233)the Key Project of Anhui Province University Excellent Youth Support Plan(gxyqZD2016102)
文摘We present a new variant of penalty method, which is different from the existing penalty methods, for solving the weak linear bilevel programming problems. We then transform it into a single-level optimization problem using Kuhn-Tucker optimality condition and discuss the relations between them. Finally, two examples are used to illustrate the feasibility of the proposed penalty method.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.
基金Supported by the National Natural Science Foundation of China(71471140,71171150,71103135)
文摘In this paper, we propose an interactive method for solving the multilevel linear programming problems based on the intuitionistic fuzzy set theory. Firstly, the membership function and the non-membership function are introduced to describe the uncertainty of the decision makers. Secondly, a satisfactory solution is derived by updating the minimum satisfactory degrees with considerations of the overall satisfactory balance among all levels. In addition, the steps of the proposed method are given in this paper. Finally, numerical examples illustrate the feasibility of this method.
文摘Detecting well-known design patterns in object-oriented program source code can help maintainers understand the design of a program. Through the detection, the understandability, maintainability, and reusability of object-oriented programs can be improved. There are automated detection techniques;however, many existing techniques are based on static analysis and use strict conditions composed on class structure data. Hence, it is difficult for them to detect and distinguish design patterns in which the class structures are similar. Moreover, it is difficult for them to deal with diversity in design pattern applications. To solve these problems in existing techniques, we propose a design pattern detection technique using source code metrics and machine learning. Our technique judges candidates for the roles that compose design patterns by using machine learning and measurements of several metrics, and it detects design patterns by analyzing the relations between candidates. It suppresses false negatives and distinguishes patterns in which the class structures are similar. As a result of experimental evaluations with a set of programs, we confirmed that our technique is more accurate than two conventional techniques.
基金the National Natural Science Foundation of China(No.50178916,No.19732020 and No.19872016)the National Key Basic lteseareh Special Foundation(No.G1999032805)+1 种基金the Special Funds for Major State Basic Researeh Projectsthe Foundation for University Key Teachers by the Ministry of Education of China
文摘A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.