Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the...Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the vegetation landscapes, we proposed the lacunarity texture derived from NDVI to characterize the spatial patterns of vegetation landscapes concerning the "gappiness" or "emptiness" characteristics. The NDVI-based lacunarity texture was incorporated into object-oriented classification for improving the identification of vegetation categories, especially Torreya which was the targeted tree species in the present research. A three-level hierarchical network of image objects was defined and the proposed texture was integrated as potential sources of information in the rules base. A knowledge base of rules created by classifier C5.0 indicated that the texture could potentially be applied in object-oriented classification. It was found that the addition of such texture improved the identification of every vegetation category. The results demonstrated that the texture could characterize the spatial patterns of vegetation structures, which could be a promising approach for vegetation identification.展开更多
The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strate...The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strategic decision making lead to the achievemellt of optimal path towardsmarket economy from the central planning situation in China. To meet user's various requirements,a series of innovations in software development have been carried out, such as system formalization with OBFRAMEs in an object-oriented paradigm for problem solving automation and techniques of modules intelligent cooperation, hybrid system of reasoning, connectionist framework utilization,etc. Integration technology has been highly emphasized and discussed in this article and an outlook to future software engineering is given in the conclusion section.展开更多
A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inhe...A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.展开更多
High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent u...High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent us from developing high quality software. To address the problem, this paper proposes integrating graphical specification technique UML with formal specification technique to construct user requirement specification. We also present a prototype tool to perform the automatic translation from UML specification into Object-Z specification.展开更多
In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat t...In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat treatment simulation was explored. The framework of simulating programs was outlined. The main C++ classes were developed, some important member functions were implemented. The present research work shows that using object-oriented method can greatly reduce the amount of coding. The programs are clear in conception, easy to test, modify and expand. By using the methodology introduced in this paper, one heat treatment process three dimensional simulation tool was developed.展开更多
This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive ...This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.展开更多
Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a ...Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.展开更多
The process of rapid urbanization in China features two opposing trends: declining rural population and increasing rural residential land, especially in southern hilly areas. The extraction and analysis of residentia...The process of rapid urbanization in China features two opposing trends: declining rural population and increasing rural residential land, especially in southern hilly areas. The extraction and analysis of residential land in rural China represents an important application for remote sensing technology. The study aimed to discover rural residential land information using RapidEye satellite imagery, taking Taihe County as the research area in the hilly region of southern China. Based on multiple experiments, classification was conducted with an optimal image segmentation scale set to 200. The object-oriented classification rule set was constructed using the customized parameters NDVI, NDWI, brightness, and length/width. The areas of residential land and other land use types were interpreted by varying the parameter values for classification rule sets. Finally, validation and accuracy evaluations were carried out. The overall accuracy of residential land interpretation is 78.40%, and producer's accuracy and user's accuracy are 68.75% and 77.33%, respectively. The results indicate that RapidEye provides a suitable data source for extraction of rural residential land using an object-oriented approach. Compared with the second national land survey of China, the classification gave an absolute difference of 93.67 ha residential land within the study area. Recognition errors occurred mainly in regions adjacent to the boundaries between residential land and other types of land.展开更多
Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depic...Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depiction.This limitation significantly hampers the development of effective evaluation and fine supervision for the rational utilization of grassland resources.To address this issue,this study concentrates on the representative grassland of Zhenglan Banner in Inner Mongolia as the study area.It integrates the strengths of Sentinel-1 and Sentinel-2 active-passive synergistic observations and introduces innovative object-oriented techniques for grassland type classification,thereby enhancing the accuracy and refinement of grassland classification.The results demonstrate the following:(1)To meet the supervision requirements of grassland resources,we propose a grassland type classification system based on remote sensing and the vegetation-habitat classification method,specifically applicable to natural grasslands in northern China.(2)By utilizing the high-spatial-resolution Normalized Difference Vegetation Index(NDVI)synthesized through the Spatial and Temporal Non-Local Filter-based Fusion Model(STNLFFM),we are able to capture the NDVI time profiles of grassland types,accurately extract vegetation phenological information within the year,and further enhance the temporal resolution.(3)The integration of multi-seasonal spectral,polarization,and phenological characteristics significantly improves the classification accuracy of grassland types.The overall accuracy reaches 82.61%,with a kappa coefficient of 0.79.Compared to using only multi-seasonal spectral features,the accuracy and kappa coefficient have improved by 15.94%and 0.19,respectively.Notably,the accuracy improvement of the gently sloping steppe is the highest,exceeding 38%.(4)Sandy grassland is the most widespread in the study area,and the growth season of grassland vegetation mainly occurs from May to September.The sandy meadow exhibits a longer growing season compared with typical grassland and meadow,and the distinct differences in phenological characteristics contribute to the accurate identification of various grassland types.展开更多
Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch ...Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch weight and lack in module installation space.However,the multilayer automotive nets software becomes more and more complex,and the development expense is difficult to predict and to keep in check.In this paper,the modeling method of hierarchical automotive nets and the substitution operation based on object-oriented colored Petri net(OOCPN) are proposed.The OOCPN model which analyzes the software structure and validates the collision mechanism of CAN/LIN bus can speed the automobile system development.First,the subsystems are divided and modeled by object-oriented Petri net(OOPN).According to the sets of message sharing relations,the message ports among them are set and the communication gate transitions are defined.Second,the OOPN model is substituted step by step until the inner objects in the automotive body control modules(BCM) are indivisible and colored by colored Petri net(CPN).And the color subsets mark the node messages for the collision mechanism.Third,the OOCPN model of the automotive body CAN/LIN nets is assembled,which keeps the message sets and the system can be expanded.The proposed model is used to analyze features of information sharing among the objects,and it is also used to describe each subsystem real-time behavior of processing messages and implemental device controllers operating,and puts forward a reasonable software framework for the automotive body control subsystem.The research can help to design the communication model in the automotive body system effectively and provide a convenient and rapid way for developing the logical hierarchy software.展开更多
As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is o...As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
The design and management of the objects about the numerical manifold method are studied by abstracting the finite cover system of numerical manifold method as independent data classes and the theoretical basis for th...The design and management of the objects about the numerical manifold method are studied by abstracting the finite cover system of numerical manifold method as independent data classes and the theoretical basis for the researching and expanding of numerical manifold method is also put forward. The Hammer integration of triangular area coordinates is used in the integration of the element. The calculation result shows that the program is accuracy and effective.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i...Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.展开更多
基金supported by the National Natural Science Foundation of China (30671212)
文摘Normalized Difference Vegetation Index (NDVI) is a very useful feature for differentiating vegetation and non-vegetation in remote sensed imagery. In the light of the function of NDVI and the spatial patterns of the vegetation landscapes, we proposed the lacunarity texture derived from NDVI to characterize the spatial patterns of vegetation landscapes concerning the "gappiness" or "emptiness" characteristics. The NDVI-based lacunarity texture was incorporated into object-oriented classification for improving the identification of vegetation categories, especially Torreya which was the targeted tree species in the present research. A three-level hierarchical network of image objects was defined and the proposed texture was integrated as potential sources of information in the rules base. A knowledge base of rules created by classifier C5.0 indicated that the texture could potentially be applied in object-oriented classification. It was found that the addition of such texture improved the identification of every vegetation category. The results demonstrated that the texture could characterize the spatial patterns of vegetation structures, which could be a promising approach for vegetation identification.
文摘The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strategic decision making lead to the achievemellt of optimal path towardsmarket economy from the central planning situation in China. To meet user's various requirements,a series of innovations in software development have been carried out, such as system formalization with OBFRAMEs in an object-oriented paradigm for problem solving automation and techniques of modules intelligent cooperation, hybrid system of reasoning, connectionist framework utilization,etc. Integration technology has been highly emphasized and discussed in this article and an outlook to future software engineering is given in the conclusion section.
基金Project supported by the National Natural Science Foundation of China (No. 40271056) Hubei Provin- cial Natural Science Foundation of China (No. 99J123).
文摘A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.
文摘High quality software requirement specification is crucial for a software development. Although much efforts and research works have been done to address the problem, the errors in user requirement are still prevent us from developing high quality software. To address the problem, this paper proposes integrating graphical specification technique UML with formal specification technique to construct user requirement specification. We also present a prototype tool to perform the automatic translation from UML specification into Object-Z specification.
文摘In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat treatment simulation was explored. The framework of simulating programs was outlined. The main C++ classes were developed, some important member functions were implemented. The present research work shows that using object-oriented method can greatly reduce the amount of coding. The programs are clear in conception, easy to test, modify and expand. By using the methodology introduced in this paper, one heat treatment process three dimensional simulation tool was developed.
文摘This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.
基金support of the Deanship of Research and Graduate Studies at Ajman University under Projects 2024-IRG-ENiT-36 and 2024-IRG-ENIT-29.
文摘Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.
基金National Natural Science Foundation of China(41301474)National Science&Technology Infrastructure Work Special Projects of China(2011FY110400,2013FY114600)the China Postdoctoral Science Foundation(2013M530708,2014T70114)
文摘The process of rapid urbanization in China features two opposing trends: declining rural population and increasing rural residential land, especially in southern hilly areas. The extraction and analysis of residential land in rural China represents an important application for remote sensing technology. The study aimed to discover rural residential land information using RapidEye satellite imagery, taking Taihe County as the research area in the hilly region of southern China. Based on multiple experiments, classification was conducted with an optimal image segmentation scale set to 200. The object-oriented classification rule set was constructed using the customized parameters NDVI, NDWI, brightness, and length/width. The areas of residential land and other land use types were interpreted by varying the parameter values for classification rule sets. Finally, validation and accuracy evaluations were carried out. The overall accuracy of residential land interpretation is 78.40%, and producer's accuracy and user's accuracy are 68.75% and 77.33%, respectively. The results indicate that RapidEye provides a suitable data source for extraction of rural residential land using an object-oriented approach. Compared with the second national land survey of China, the classification gave an absolute difference of 93.67 ha residential land within the study area. Recognition errors occurred mainly in regions adjacent to the boundaries between residential land and other types of land.
基金supported by the National Natural Science Foundation of China[grant number 42001386,42271407]within the ESA-MOST China Dragon 5 Cooperation(ID:59313).
文摘Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depiction.This limitation significantly hampers the development of effective evaluation and fine supervision for the rational utilization of grassland resources.To address this issue,this study concentrates on the representative grassland of Zhenglan Banner in Inner Mongolia as the study area.It integrates the strengths of Sentinel-1 and Sentinel-2 active-passive synergistic observations and introduces innovative object-oriented techniques for grassland type classification,thereby enhancing the accuracy and refinement of grassland classification.The results demonstrate the following:(1)To meet the supervision requirements of grassland resources,we propose a grassland type classification system based on remote sensing and the vegetation-habitat classification method,specifically applicable to natural grasslands in northern China.(2)By utilizing the high-spatial-resolution Normalized Difference Vegetation Index(NDVI)synthesized through the Spatial and Temporal Non-Local Filter-based Fusion Model(STNLFFM),we are able to capture the NDVI time profiles of grassland types,accurately extract vegetation phenological information within the year,and further enhance the temporal resolution.(3)The integration of multi-seasonal spectral,polarization,and phenological characteristics significantly improves the classification accuracy of grassland types.The overall accuracy reaches 82.61%,with a kappa coefficient of 0.79.Compared to using only multi-seasonal spectral features,the accuracy and kappa coefficient have improved by 15.94%and 0.19,respectively.Notably,the accuracy improvement of the gently sloping steppe is the highest,exceeding 38%.(4)Sandy grassland is the most widespread in the study area,and the growth season of grassland vegetation mainly occurs from May to September.The sandy meadow exhibits a longer growing season compared with typical grassland and meadow,and the distinct differences in phenological characteristics contribute to the accurate identification of various grassland types.
基金supported by National Natural Science Foundation of China (Grant No. 60873003)
文摘Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch weight and lack in module installation space.However,the multilayer automotive nets software becomes more and more complex,and the development expense is difficult to predict and to keep in check.In this paper,the modeling method of hierarchical automotive nets and the substitution operation based on object-oriented colored Petri net(OOCPN) are proposed.The OOCPN model which analyzes the software structure and validates the collision mechanism of CAN/LIN bus can speed the automobile system development.First,the subsystems are divided and modeled by object-oriented Petri net(OOPN).According to the sets of message sharing relations,the message ports among them are set and the communication gate transitions are defined.Second,the OOPN model is substituted step by step until the inner objects in the automotive body control modules(BCM) are indivisible and colored by colored Petri net(CPN).And the color subsets mark the node messages for the collision mechanism.Third,the OOCPN model of the automotive body CAN/LIN nets is assembled,which keeps the message sets and the system can be expanded.The proposed model is used to analyze features of information sharing among the objects,and it is also used to describe each subsystem real-time behavior of processing messages and implemental device controllers operating,and puts forward a reasonable software framework for the automotive body control subsystem.The research can help to design the communication model in the automotive body system effectively and provide a convenient and rapid way for developing the logical hierarchy software.
基金Research on Algorithm Model for Monitoring and Evaluating Typical Disaster Situations of Electric Power Equipment Based on Remote Sensing Imaging Technology of Heaven and Earth,South Grid Guangxi Power Grid Company Science and Technology Project(GXKJXM20222160).
文摘As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金This project is supported by National Natural Science Foundation of China.
文摘The design and management of the objects about the numerical manifold method are studied by abstracting the finite cover system of numerical manifold method as independent data classes and the theoretical basis for the researching and expanding of numerical manifold method is also put forward. The Hammer integration of triangular area coordinates is used in the integration of the element. The calculation result shows that the program is accuracy and effective.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.