Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of...Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface info...UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface information.It is an important research task for precision agriculture to make full use of the spectrum,texture,color and other characteristic information of crops,especially the spatial arrangement and structure information of features,to explore effective methods for the classification of multiple varieties of crops.In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images,the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field,which mainly includes image segmentation and object classification.The results showed that the plots obtained after classification were continuous and complete,basically in line with the actual situation,and the overall accuracy of crop classification was 91.73%,with Kappa coefficient of 0.87.Compared with the crop planting area based on remote sensing interpretation and field survey,the area error of 17 species of crops in this study was controlled within 15%,which provides a basis for object-oriented crop classification of UAV remote sensing images.展开更多
As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is o...As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi...In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.展开更多
Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-a...Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-aided diagnosis system is highly required.Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost.Recently,many learning-based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset(BUSI)datasets;however,the manual handling is not an easy process and time consuming.The authors propose an EfficientNet-integrated ResNet deep network and XAI-based framework for accurately classifying breast cancer(malignant and benign).In the initial step,data augmentation is performed to increase the number of training samples.For this purpose,three-pixel flip mathematical equations are introduced:horizontal,vertical,and 90°.Later,two pretrained deep learning models were employed,skipped some layers,and fine-tuned.Both fine-tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer.Explainable artificial intelligence-based analysed the performance of trained models.After that,a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean.This technique selects the best features and fuses using a new parallel zeropadding maximum correlated coefficient features.In the end,the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms.The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4%and 98%accuracy in two different experiments.Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy.In addition,the proposed framework was executed less than the original deep learning models.展开更多
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b...Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios.展开更多
Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addres...Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing used.Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of 0.911.In the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of 0.894.Importantly,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU hardware.Notably,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of 0.891.This is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 accuracy.This improvement in small lesion detection is particularly crucial for early-stage breast cancer identification.Results from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy.展开更多
Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlineari...Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlinearity is challenging,and omitting the nonlinear layers in a standard CNN comes with a significant reduction in accuracy.We use knowledge distillation to compress modified AlexNet to a single linear convolutional layer and an electronic backend(two fully connected layers).We obtain comparable performance with a purely electronic CNN with five convolutional layers and three fully connected layers.We implement the convolution optically via engineering the point spread function of an inverse-designed meta-optic.Using this hybrid approach,we estimate a reduction in multiply-accumulate operations from 17M in a conventional electronic modified AlexNet to only 86 K in the hybrid compressed network enabled by the optical front end.This constitutes over 2 orders of magnitude of reduction in latency and power consumption.Furthermore,we experimentally demonstrate that the classification accuracy of the system exceeds 93%on the MNIST dataset of handwritten digits.展开更多
In hyperspectral image classification(HSIC),accurately extracting spatial and spectral information from hyperspectral images(HSI)is crucial for achieving precise classification.However,due to low spatial resolution an...In hyperspectral image classification(HSIC),accurately extracting spatial and spectral information from hyperspectral images(HSI)is crucial for achieving precise classification.However,due to low spatial resolution and complex category boundary,mixed pixels containing features from multiple classes are inevitable in HSIs.Additionally,the spectral similarity among different classes challenge for extracting distinctive spectral features essential for HSIC.To address the impact of mixed pixels and spectral similarity for HSIC,we propose a central-pixel guiding sub-pixel and sub-channel convolution network(CP-SPSC)to extract more precise spatial and spectral features.Firstly,we designed spatial attention(CP-SPA)and spectral attention(CP-SPE)informed by the central pixel to effectively reduce spectral interference of irrelevant categories in the same patch.Furthermore,we use CP-SPA to guide 2D sub-pixel convolution(SPConv2d)to capture spatial features finer than the pixel level.Meanwhile,CP-SPE is also utilized to guide 1D sub-channel con-volution(SCConv1d)in selecting more precise spectral channels.For fusing spatial and spectral information at the feature-level,the spectral feature extension transformation module(SFET)adopts mirror-padding and snake permutation to transform 1D spectral information of the center pixel into 2D spectral features.Experiments on three popular datasets demonstrate that ours out-performs several state-of-the-art methods in accuracy.展开更多
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat...Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.展开更多
Skin cancer is among the most common malignancies worldwide,but its mortality burden is largely driven by aggressive subtypes such as melanoma,with outcomes varying across regions and healthcare settings.These variati...Skin cancer is among the most common malignancies worldwide,but its mortality burden is largely driven by aggressive subtypes such as melanoma,with outcomes varying across regions and healthcare settings.These variations emphasize the importance of reliable diagnostic technologies that support clinicians in detecting skin malignancies with higher accuracy.Traditional diagnostic methods often rely on subjective visual assessments,which can lead to misdiagnosis.This study addresses these challenges by developing HybridFusionNet,a novel model that integrates Convolutional Neural Networks(CNN)with 1D feature extraction techniques to enhance diagnostic accuracy.Utilizing two extensive datasets,BCN20000 and HAM10000,the methodology includes data preprocessing,application of Synthetic Minority Oversampling Technique combined with Edited Nearest Neighbors(SMOTEENN)for data balancing,and optimization of feature selection using the Tree-based Pipeline Optimization Tool(TPOT).The results demonstrate significant performance improvements over traditional CNN models,achieving an accuracy of 0.9693 on the BCN20000 dataset and 0.9909 on the HAM10000 dataset.The HybridFusionNet model not only outperforms conventionalmethods but also effectively addresses class imbalance.To enhance transparency,it integrates post-hoc explanation techniques such as LIME,which highlight the features influencing predictions.These findings highlight the potential of HybridFusionNet to support real-world applications,including physician-assist systems,teledermatology,and large-scale skin cancer screening programs.By improving diagnostic efficiency and enabling access to expert-level analysis,the modelmay enhance patient outcomes and foster greater trust in artificial intelligence(AI)-assisted clinical decision-making.展开更多
The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring ef...The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models.展开更多
At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correla...At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.展开更多
In a context where urban satellite image processing technologies are undergoing rapid evolution,this article presents an innovative and rigorous approach to satellite image classification applied to urban planning.Thi...In a context where urban satellite image processing technologies are undergoing rapid evolution,this article presents an innovative and rigorous approach to satellite image classification applied to urban planning.This research proposes an integrated methodological framework,based on the principles of model-driven engineering(MDE),to transform a generic meta-model into a meta-model specifically dedicated to urban satellite image classification.We implemented this transformation using the Atlas Transformation Language(ATL),guaranteeing a smooth and consistent transition from platform-independent model(PIM)to platform-specific model(PSM),according to the principles of model-driven architecture(MDA).The application of this IDM methodology enables advanced structuring of satellite data for targeted urban planning analyses,making it possible to classify various urban zones such as built-up,cultivated,arid and water areas.The novelty of this approach lies in the automation and standardization of the classification process,which significantly reduces the need for manual intervention,and thus improves the reliability,reproducibility and efficiency of urban data analysis.By adopting this method,decision-makers and urban planners are provided with a powerful tool for systematically and consistently analyzing and interpreting satellite images,facilitating decision-making in critical areas such as urban space management,infrastructure planning and environmental preservation.展开更多
Carotid artery plaques represent a major contributor to the morbidity and mortality associated with cerebrovascular disease,and their clinical significance is largely determined by the risk linked to plaque vulnerabil...Carotid artery plaques represent a major contributor to the morbidity and mortality associated with cerebrovascular disease,and their clinical significance is largely determined by the risk linked to plaque vulnerability.Therefore,classifying plaque risk constitutes one of themost critical tasks in the clinicalmanagement of this condition.While classification models derived from individual medical centers have been extensively investigated,these singlecenter models often fail to generalize well to multi-center data due to variations in ultrasound images caused by differences in physician expertise and equipment.To address this limitation,a Dual-Classifier Label Correction Networkmodel(DCLCN)is proposed for the classification of carotid plaque ultrasound images acrossmultiplemedical centers.TheDCLCNdesigns amulti-center domain adaptationmodule that leverages a dual-classifier strategy to extract knowledge from both source and target centers,thereby reducing feature discrepancies through a domain adaptation layer.Additionally,to mitigate the impact of image noise,a label modeling and correction module is introduced to generate pseudo-labels for the target centers and iteratively refine them using an end-to-end correction mechanism.Experiments on the carotid plaque dataset collected fromthreemedical centers demonstrate that the DCLCN achieves commendable performance and robustness.展开更多
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金supported by the National Natural Science Foundation of China(No.31870620)the National Technology Extension Fund of Forestry([2019]06)the Fundamental Research Funds for the Central Universities(No.PTYX202107)。
文摘Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
基金Supported by College Students Innovation and Entrepreneurship Training Program of Jilin University(No.202010183695)。
文摘UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface information.It is an important research task for precision agriculture to make full use of the spectrum,texture,color and other characteristic information of crops,especially the spatial arrangement and structure information of features,to explore effective methods for the classification of multiple varieties of crops.In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images,the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field,which mainly includes image segmentation and object classification.The results showed that the plots obtained after classification were continuous and complete,basically in line with the actual situation,and the overall accuracy of crop classification was 91.73%,with Kappa coefficient of 0.87.Compared with the crop planting area based on remote sensing interpretation and field survey,the area error of 17 species of crops in this study was controlled within 15%,which provides a basis for object-oriented crop classification of UAV remote sensing images.
基金Research on Algorithm Model for Monitoring and Evaluating Typical Disaster Situations of Electric Power Equipment Based on Remote Sensing Imaging Technology of Heaven and Earth,South Grid Guangxi Power Grid Company Science and Technology Project(GXKJXM20222160).
文摘As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
基金Supported by the National Natural Science Foundation of China(61601176)。
文摘In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.
文摘Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-aided diagnosis system is highly required.Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost.Recently,many learning-based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset(BUSI)datasets;however,the manual handling is not an easy process and time consuming.The authors propose an EfficientNet-integrated ResNet deep network and XAI-based framework for accurately classifying breast cancer(malignant and benign).In the initial step,data augmentation is performed to increase the number of training samples.For this purpose,three-pixel flip mathematical equations are introduced:horizontal,vertical,and 90°.Later,two pretrained deep learning models were employed,skipped some layers,and fine-tuned.Both fine-tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer.Explainable artificial intelligence-based analysed the performance of trained models.After that,a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean.This technique selects the best features and fuses using a new parallel zeropadding maximum correlated coefficient features.In the end,the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms.The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4%and 98%accuracy in two different experiments.Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy.In addition,the proposed framework was executed less than the original deep learning models.
基金funded by Innovation and Development Special Project of China Meteorological Administration(CXFZ2022J038,CXFZ2024J035)Sichuan Science and Technology Program(No.2023YFQ0072)+1 种基金Key Laboratory of Smart Earth(No.KF2023YB03-07)Automatic Software Generation and Intelligent Service Key Laboratory of Sichuan Province(CUIT-SAG202210).
文摘Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R435),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing used.Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of 0.911.In the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of 0.894.Importantly,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU hardware.Notably,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of 0.891.This is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 accuracy.This improvement in small lesion detection is particularly crucial for early-stage breast cancer identification.Results from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy.
基金supported by the National Science Foundation(Grant Nos.NSF-ECCS-2127235 and EFRI-BRAID-2223495)Part of this work was conducted at the Washington Nanofabrication Facility/Molecular Analysis Facility,a National Nanotechnology Coordinated Infrastructure(NNCI)site at the University of Washington with partial support from the National Science Foundation(Grant Nos.NNCI-1542101 and NNCI-2025489).
文摘Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlinearity is challenging,and omitting the nonlinear layers in a standard CNN comes with a significant reduction in accuracy.We use knowledge distillation to compress modified AlexNet to a single linear convolutional layer and an electronic backend(two fully connected layers).We obtain comparable performance with a purely electronic CNN with five convolutional layers and three fully connected layers.We implement the convolution optically via engineering the point spread function of an inverse-designed meta-optic.Using this hybrid approach,we estimate a reduction in multiply-accumulate operations from 17M in a conventional electronic modified AlexNet to only 86 K in the hybrid compressed network enabled by the optical front end.This constitutes over 2 orders of magnitude of reduction in latency and power consumption.Furthermore,we experimentally demonstrate that the classification accuracy of the system exceeds 93%on the MNIST dataset of handwritten digits.
基金supported by the National Natural Science Foundation of China(No.62071323).
文摘In hyperspectral image classification(HSIC),accurately extracting spatial and spectral information from hyperspectral images(HSI)is crucial for achieving precise classification.However,due to low spatial resolution and complex category boundary,mixed pixels containing features from multiple classes are inevitable in HSIs.Additionally,the spectral similarity among different classes challenge for extracting distinctive spectral features essential for HSIC.To address the impact of mixed pixels and spectral similarity for HSIC,we propose a central-pixel guiding sub-pixel and sub-channel convolution network(CP-SPSC)to extract more precise spatial and spectral features.Firstly,we designed spatial attention(CP-SPA)and spectral attention(CP-SPE)informed by the central pixel to effectively reduce spectral interference of irrelevant categories in the same patch.Furthermore,we use CP-SPA to guide 2D sub-pixel convolution(SPConv2d)to capture spatial features finer than the pixel level.Meanwhile,CP-SPE is also utilized to guide 1D sub-channel con-volution(SCConv1d)in selecting more precise spectral channels.For fusing spatial and spectral information at the feature-level,the spectral feature extension transformation module(SFET)adopts mirror-padding and snake permutation to transform 1D spectral information of the center pixel into 2D spectral features.Experiments on three popular datasets demonstrate that ours out-performs several state-of-the-art methods in accuracy.
基金supported by the National Natural Science Foundation of China(62302167,62477013)Natural Science Foundation of Shanghai(No.24ZR1456100)+1 种基金Science and Technology Commission of Shanghai Municipality(No.24DZ2305900)the Shanghai Municipal Special Fund for Promoting High-Quality Development of Industries(2211106).
文摘Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.
文摘Skin cancer is among the most common malignancies worldwide,but its mortality burden is largely driven by aggressive subtypes such as melanoma,with outcomes varying across regions and healthcare settings.These variations emphasize the importance of reliable diagnostic technologies that support clinicians in detecting skin malignancies with higher accuracy.Traditional diagnostic methods often rely on subjective visual assessments,which can lead to misdiagnosis.This study addresses these challenges by developing HybridFusionNet,a novel model that integrates Convolutional Neural Networks(CNN)with 1D feature extraction techniques to enhance diagnostic accuracy.Utilizing two extensive datasets,BCN20000 and HAM10000,the methodology includes data preprocessing,application of Synthetic Minority Oversampling Technique combined with Edited Nearest Neighbors(SMOTEENN)for data balancing,and optimization of feature selection using the Tree-based Pipeline Optimization Tool(TPOT).The results demonstrate significant performance improvements over traditional CNN models,achieving an accuracy of 0.9693 on the BCN20000 dataset and 0.9909 on the HAM10000 dataset.The HybridFusionNet model not only outperforms conventionalmethods but also effectively addresses class imbalance.To enhance transparency,it integrates post-hoc explanation techniques such as LIME,which highlight the features influencing predictions.These findings highlight the potential of HybridFusionNet to support real-world applications,including physician-assist systems,teledermatology,and large-scale skin cancer screening programs.By improving diagnostic efficiency and enabling access to expert-level analysis,the modelmay enhance patient outcomes and foster greater trust in artificial intelligence(AI)-assisted clinical decision-making.
基金supported by the National Natural Science Foundation of China(Grant Nos.62071315 and 62271336).
文摘The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models.
基金the National Natural Science Foundation of China(Nos.62167005 and 61966018)the Key Research Projects of Jiangxi Provincial Department of Education(No.GJJ200302)。
文摘At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.
文摘In a context where urban satellite image processing technologies are undergoing rapid evolution,this article presents an innovative and rigorous approach to satellite image classification applied to urban planning.This research proposes an integrated methodological framework,based on the principles of model-driven engineering(MDE),to transform a generic meta-model into a meta-model specifically dedicated to urban satellite image classification.We implemented this transformation using the Atlas Transformation Language(ATL),guaranteeing a smooth and consistent transition from platform-independent model(PIM)to platform-specific model(PSM),according to the principles of model-driven architecture(MDA).The application of this IDM methodology enables advanced structuring of satellite data for targeted urban planning analyses,making it possible to classify various urban zones such as built-up,cultivated,arid and water areas.The novelty of this approach lies in the automation and standardization of the classification process,which significantly reduces the need for manual intervention,and thus improves the reliability,reproducibility and efficiency of urban data analysis.By adopting this method,decision-makers and urban planners are provided with a powerful tool for systematically and consistently analyzing and interpreting satellite images,facilitating decision-making in critical areas such as urban space management,infrastructure planning and environmental preservation.
基金supported by Shanghai Technical Service Computing Center of Science and Engineering,Shanghai University.
文摘Carotid artery plaques represent a major contributor to the morbidity and mortality associated with cerebrovascular disease,and their clinical significance is largely determined by the risk linked to plaque vulnerability.Therefore,classifying plaque risk constitutes one of themost critical tasks in the clinicalmanagement of this condition.While classification models derived from individual medical centers have been extensively investigated,these singlecenter models often fail to generalize well to multi-center data due to variations in ultrasound images caused by differences in physician expertise and equipment.To address this limitation,a Dual-Classifier Label Correction Networkmodel(DCLCN)is proposed for the classification of carotid plaque ultrasound images acrossmultiplemedical centers.TheDCLCNdesigns amulti-center domain adaptationmodule that leverages a dual-classifier strategy to extract knowledge from both source and target centers,thereby reducing feature discrepancies through a domain adaptation layer.Additionally,to mitigate the impact of image noise,a label modeling and correction module is introduced to generate pseudo-labels for the target centers and iteratively refine them using an end-to-end correction mechanism.Experiments on the carotid plaque dataset collected fromthreemedical centers demonstrate that the DCLCN achieves commendable performance and robustness.