As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. S...As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.展开更多
The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problem...The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.展开更多
Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect n...Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect not only the local environment but also the whole country with frequent and heavy floods. Remote sensing (RS) from Satellites and Airplanes used in Geographical Information Systems (GIS) are technologies that can aid in understanding the on-going environmental processes. Furthermore, help researchers to observe, understand, forecast and suggest response to changes that occur. It can be natural disasters or man-made disasters and human induced factors. Still analysis accuracy issues play a vital role for the formulation of any strategy. To achieve better results, object based analysis methods have been tested. Various algorithms are developed by the analysts to calculate the magnitude of land cover changes. However, they must be evaluated for each environment that is under observation as mountainous areas. Here were object-based methods evaluated in comparison with pixel based. Landslides, soil moisture, soil permeability, snow cover and vegetation cover can be effectively monitored by those methods.展开更多
Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profo...Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profound concept that he is trying to depict to his readers,and explains the poem showing how Wordsworth eloquently uses figurative language,imagery,and personification to describe a scenic display of the daffodils and demonstrate his thought"emotion recollected in tranquility"in hope of helping reader understand Wordsworth’s poetry much better.展开更多
The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient ...The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.展开更多
The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills...The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
The graphic design industry has been developing rapidly in recent years.People have begun to focus on steering the development of graphic design in the direction of localization,integrating more traditional Chinese el...The graphic design industry has been developing rapidly in recent years.People have begun to focus on steering the development of graphic design in the direction of localization,integrating more traditional Chinese elements,raising the level of acceptance toward graphic design content,and disseminating traditional culture on this basis.Ink art plays an important role in the historical and cultural development process.It uses simple color contrast to construct different situations and possesses unique artistic charm and cultural heritage.Incorporating ink elements into graphic design may enhance the graphic design style and provide inspiration.This article focuses on the reasons,advantages,and strategies of using ink art in graphic design imagery,hoping to provide references for graphic design activities.展开更多
Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great ...Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.展开更多
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori...This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively.展开更多
Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acqu...Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acquisition of the UAV-based image commonly results in very high resolution and very large-scale images,which poses great challenges for subsequent applications.Therefore,an efficient representation of large-scale UAV images is necessary for the extraction of the required information in a reasonable time.In this work,we proposed a multi-scale hierarchical representation,i.e.binary partition tree,for analyzing large-scale UAV images.More precisely,we first obtained an initial partition of images by an oversegmentation algorithm,i.e.the simple linear iterative clustering.Next,we merged the similar superpixels to build an object-based hierarchical structure by fully considering the spectral and spatial information of the superpixels and their topological relationships.Moreover,objects of interest and optimal segmentation were obtained using object-based analysis methods with the hierarchical structure.Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake and the mosaic of images in the South-west of Munich demonstrate the effectiveness and efficiency of our proposed method.展开更多
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland an...The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.展开更多
Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry ...Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.展开更多
The use of Digital Shoreline Analysis System was used to determine shoreline changes in Ikoli River,Yenagoa,Bayelsa State.Shoreline data were extracted from satellite imagery over thirty years(1991-2021).The basis of ...The use of Digital Shoreline Analysis System was used to determine shoreline changes in Ikoli River,Yenagoa,Bayelsa State.Shoreline data were extracted from satellite imagery over thirty years(1991-2021).The basis of this study is to use Digital Shoreline Analysis System to determine erosion and accretion areas.The result reveals that the average erosion rate in the study area is 1.16 m/year and the accretion rate is 1.62 m/year along the Ikoli River in Ogbogoro Community in Yenagoa,Bayelsa State.The mean shoreline length is 5.24 km with a baseline length of 5.2 km and the area is classified into four zones to delineate properly area of erosion and accretion based on the five class of Linear regression rate,endpoint rate and weighted linear rate of which zone Ⅰ contain very high erosion and high erosion with an area of landmass 255449.93 m^(2) of 38%,zone Ⅱ contain moderate accretion,very high accretion and high accretion with a land area of 1666816.46 m^(2) with 24%,zone Ⅲ has very high erosion and high erosion with an area of landmass 241610.85 m^(2) of 34% and zone Ⅳ contain moderate accretion and high accretion with land area 30888.08 m^(2) with 4%.Out of the four zones,zone Ⅰ and Ⅱ were found to be eroding with 72% and zone Ⅱ and Ⅳ contain accretion with 28%.The result shows that 44% of the area have been eroded.Therefore,coastal engineers,planners,and shoreline zone management authorities can use DSAS to create more appropriate management plans and regulations for coastal zones and other coastal parts of the state with similar geographic features.展开更多
文摘As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.
文摘The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.
文摘Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect not only the local environment but also the whole country with frequent and heavy floods. Remote sensing (RS) from Satellites and Airplanes used in Geographical Information Systems (GIS) are technologies that can aid in understanding the on-going environmental processes. Furthermore, help researchers to observe, understand, forecast and suggest response to changes that occur. It can be natural disasters or man-made disasters and human induced factors. Still analysis accuracy issues play a vital role for the formulation of any strategy. To achieve better results, object based analysis methods have been tested. Various algorithms are developed by the analysts to calculate the magnitude of land cover changes. However, they must be evaluated for each environment that is under observation as mountainous areas. Here were object-based methods evaluated in comparison with pixel based. Landslides, soil moisture, soil permeability, snow cover and vegetation cover can be effectively monitored by those methods.
文摘Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profound concept that he is trying to depict to his readers,and explains the poem showing how Wordsworth eloquently uses figurative language,imagery,and personification to describe a scenic display of the daffodils and demonstrate his thought"emotion recollected in tranquility"in hope of helping reader understand Wordsworth’s poetry much better.
文摘The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.
基金Supported by the National Scientific Research Fund of China(No.31201133)
文摘The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
文摘The graphic design industry has been developing rapidly in recent years.People have begun to focus on steering the development of graphic design in the direction of localization,integrating more traditional Chinese elements,raising the level of acceptance toward graphic design content,and disseminating traditional culture on this basis.Ink art plays an important role in the historical and cultural development process.It uses simple color contrast to construct different situations and possesses unique artistic charm and cultural heritage.Incorporating ink elements into graphic design may enhance the graphic design style and provide inspiration.This article focuses on the reasons,advantages,and strategies of using ink art in graphic design imagery,hoping to provide references for graphic design activities.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070503)the National Key Research and Development Program of China(2021YFD1500100)+2 种基金the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University (20R04)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(CASPLOS-CCSI)a PhD studentship ‘‘Deep Learning in massive area,multi-scale resolution remotely sensed imagery”(EAA7369),sponsored by Lancaster University and Ordnance Survey (the national mapping agency of Great Britain)。
文摘Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.
文摘This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively.
基金This work was supported in part by the National Key Basic Research and Development Program of China[grant number 2013CB733404]the National Natural Science Foundation of China[grant number 61271401],[grant number 91338113].
文摘Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acquisition of the UAV-based image commonly results in very high resolution and very large-scale images,which poses great challenges for subsequent applications.Therefore,an efficient representation of large-scale UAV images is necessary for the extraction of the required information in a reasonable time.In this work,we proposed a multi-scale hierarchical representation,i.e.binary partition tree,for analyzing large-scale UAV images.More precisely,we first obtained an initial partition of images by an oversegmentation algorithm,i.e.the simple linear iterative clustering.Next,we merged the similar superpixels to build an object-based hierarchical structure by fully considering the spectral and spatial information of the superpixels and their topological relationships.Moreover,objects of interest and optimal segmentation were obtained using object-based analysis methods with the hierarchical structure.Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake and the mosaic of images in the South-west of Munich demonstrate the effectiveness and efficiency of our proposed method.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.
文摘The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.
文摘Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.
文摘The use of Digital Shoreline Analysis System was used to determine shoreline changes in Ikoli River,Yenagoa,Bayelsa State.Shoreline data were extracted from satellite imagery over thirty years(1991-2021).The basis of this study is to use Digital Shoreline Analysis System to determine erosion and accretion areas.The result reveals that the average erosion rate in the study area is 1.16 m/year and the accretion rate is 1.62 m/year along the Ikoli River in Ogbogoro Community in Yenagoa,Bayelsa State.The mean shoreline length is 5.24 km with a baseline length of 5.2 km and the area is classified into four zones to delineate properly area of erosion and accretion based on the five class of Linear regression rate,endpoint rate and weighted linear rate of which zone Ⅰ contain very high erosion and high erosion with an area of landmass 255449.93 m^(2) of 38%,zone Ⅱ contain moderate accretion,very high accretion and high accretion with a land area of 1666816.46 m^(2) with 24%,zone Ⅲ has very high erosion and high erosion with an area of landmass 241610.85 m^(2) of 34% and zone Ⅳ contain moderate accretion and high accretion with land area 30888.08 m^(2) with 4%.Out of the four zones,zone Ⅰ and Ⅱ were found to be eroding with 72% and zone Ⅱ and Ⅳ contain accretion with 28%.The result shows that 44% of the area have been eroded.Therefore,coastal engineers,planners,and shoreline zone management authorities can use DSAS to create more appropriate management plans and regulations for coastal zones and other coastal parts of the state with similar geographic features.