The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problem...The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.展开更多
Semantic segmentation of remote sensing images is an important but unsolved problem in the remote sensing society.Advanced image semantic segmentation models,such as DeepLabv3+,have achieved astonishing performance fo...Semantic segmentation of remote sensing images is an important but unsolved problem in the remote sensing society.Advanced image semantic segmentation models,such as DeepLabv3+,have achieved astonishing performance for semantically labeling very high resolution(VHR)remote sensing images.However,it is difficult for these models to capture the precise outlines of ground objects and explore the context information that revealing relationships among image objects for optimizing segmentation results.Consequently,this study proposes a semantic segmentation method for VHR images by incorporating deep learning semantic segmentation model(DeepLabv3+)and objectbased image analysis(OBIA),wherein DSM is employed to provide geometric information to enhance the interpretation of VHR images.The proposed method first obtains two initial probabilistic labeling predictions using a DeepLabv3+network on spectral image and a random forest(RF)classifier on hand-crafted features,respectively.These two predictions are then integrated by Dempster-Shafer(D-S)evidence theory to be fed into an object-constrained higher-order conditional random field(CRF)framework to estimate the final semantic labeling results with the consideration of the spatial contextual information.The proposed method is applied to the ISPRS 2D semantic labeling benchmark,and competitive overall accuracies of 90.6%and 85.0%are achieved for Vaihingen and Potsdam datasets,respectively.展开更多
The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The ...The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.展开更多
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status...Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.展开更多
BACKGROUND Congestive hepatopathy,also known as nutmeg liver,is liver damage secondary to chronic heart failure(HF).Its morphological characteristics in terms of medical imaging are not defined and remain unclear.AIM ...BACKGROUND Congestive hepatopathy,also known as nutmeg liver,is liver damage secondary to chronic heart failure(HF).Its morphological characteristics in terms of medical imaging are not defined and remain unclear.AIM To leverage machine learning to capture imaging features of congestive hepatopathy using incidentally acquired computed tomography(CT)scans.METHODS We retrospectively analyzed 179 chronic HF patients who underwent echocardiography and CT within one year.Right HF severity was classified into three grades.Liver CT images at the paraumbilical vein level were used to develop a ResNet-based machine learning model to predict tricuspid regurgitation(TR)severity.Model accuracy was compared with that of six gastroenterology and four radiology experts.RESULTS In the included patients,120 were male(mean age:73.1±14.4 years).The accuracy of the results predicting TR severity from a single CT image for the machine learning model was significantly higher than the average accuracy of the experts.The model was found to be exceptionally reliable for predicting severe TR.CONCLUSION Deep learning models,particularly those using ResNet architectures,can help identify morphological changes associated with TR severity,aiding in early liver dysfunction detection in patients with HF,thereby improving outcomes.展开更多
Corporate image is the external manifestation of a company’s cultural and spiritual essence,as well as the overall impression formed through its interactions with the public.Huawei,as a successful multinational enter...Corporate image is the external manifestation of a company’s cultural and spiritual essence,as well as the overall impression formed through its interactions with the public.Huawei,as a successful multinational enterprise,has established a robust corporate image in the international market through technological innovation and brand building.Moreover,Huawei’s development is closely aligned with national policies and strategies,making it a representative enterprise for showcasing China’s technological independence and national image.This study examines Huawei’s English press releases on product launches published between 2022 and 2024 and conducts a comparative analysis with similar materials from Apple’s official website.Based on Fairclough’s three-dimensional discourse analysis model,this research explores the linguistic features of Huawei’s corporate image construction from the perspectives of text,discourse practice,and social practice.The findings reveal that Huawei has successfully constructed a corporate image that emphasizes technological innovation,prioritizes user needs,and underscores its identity as a national enterprise.This study not only sheds light on Huawei’s strategies for image construction in international competition but also provides a valuable reference for Chinese enterprises in their cultural communication and brand building during the globalization process.展开更多
Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,...Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.展开更多
Applying visual grammar theory,this study examines representational,interactive,and compositional meanings of the giant panda in Western media cartoons related to China from 1999 to the present.Distinct phases in the ...Applying visual grammar theory,this study examines representational,interactive,and compositional meanings of the giant panda in Western media cartoons related to China from 1999 to the present.Distinct phases in the panda’s representation were identified and illustrated by cases of cartoons in major Western media.These phases trace shift of panda cartoon image from a symbol of peace and friendliness to a politicized emblem of China’s international stance.Key visual trends,such as transitivity,color symbolism,scale enlargement,and increasing compositional complexity,embody the panda’s role in shaping China’s global image and its function in international discourse.These trends reflect the panda’s transformation into a contested symbol,which mediates between China’s self-representation and Western perceptions of its geopolitical rise.By situating the analysis within the context of China’s growing global influence,this study contributes to visual and media studies,demonstrating how cultural symbols are recontextualized to reflect and shape geopolitical narratives.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acqu...Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acquisition of the UAV-based image commonly results in very high resolution and very large-scale images,which poses great challenges for subsequent applications.Therefore,an efficient representation of large-scale UAV images is necessary for the extraction of the required information in a reasonable time.In this work,we proposed a multi-scale hierarchical representation,i.e.binary partition tree,for analyzing large-scale UAV images.More precisely,we first obtained an initial partition of images by an oversegmentation algorithm,i.e.the simple linear iterative clustering.Next,we merged the similar superpixels to build an object-based hierarchical structure by fully considering the spectral and spatial information of the superpixels and their topological relationships.Moreover,objects of interest and optimal segmentation were obtained using object-based analysis methods with the hierarchical structure.Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake and the mosaic of images in the South-west of Munich demonstrate the effectiveness and efficiency of our proposed method.展开更多
Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great ...Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 ...AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted...BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.展开更多
Confocal laser endomicroscopy(CLE)has become an indispensable tool in the diagnosis and detection of gastrointestinal(GI)diseases due to its high-resolution and high-contrast imaging capabilities.However,the early-sta...Confocal laser endomicroscopy(CLE)has become an indispensable tool in the diagnosis and detection of gastrointestinal(GI)diseases due to its high-resolution and high-contrast imaging capabilities.However,the early-stage imaging changes of gastrointestinal disorders are often subtle,and traditional medical image analysis methods rely heavily on manual interpretation,which is time-consuming,subject to observer variability,and inefficient for accurate lesion identification across large-scale image datasets.With the introduction of artificial intelligence(AI)technologies,AI-driven CLE image analysis systems can automatically extract pathological features and have demonstrated significant clinical value in lesion recognition,classification diagnosis,and malignancy prediction of GI diseases.These systems greatly enhance diagnostic efficiency and early detection capabilities.This review summarizes the applications of AI-assisted CLE in GI diseases,analyzes the limitations of current technologies,and explores future research directions.It is expected that the deep integration of AI and confocal imaging technologies will provide strong support for precision diagnosis and personalized treatment in the field of gastrointestinal disorders.展开更多
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
We present two haze removal algorithms for single image based on haziness analysis.One algorithm regards haze as the veil layer,and the other takes haze as the transmission.The former uses the illumination component i...We present two haze removal algorithms for single image based on haziness analysis.One algorithm regards haze as the veil layer,and the other takes haze as the transmission.The former uses the illumination component image obtained by retinex algorithm and the depth information of the original image to remove the veil layer.The latter employs guided filter to obtain the refined haze transmission and separates it from the original image.The main advantages of the proposed methods are that no user interaction is needed and the computing speed is relatively fast.A comparative study and quantitative evaluation with some main existing algorithms demonstrate that similar even better quality results can be obtained by the proposed methods.On the top of haze removal,several applications of the haze transmission including image refocusing,haze simulation,relighting and 2-dimensional(2D)to 3-dimensional(3D) stereoscopic conversion are also implemented.展开更多
文摘The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.
基金was funded by the Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of Ministry of Natural Resources[grant number 2020-2-1]the National Natural Science Foundation of China[grant number 41871372].
文摘Semantic segmentation of remote sensing images is an important but unsolved problem in the remote sensing society.Advanced image semantic segmentation models,such as DeepLabv3+,have achieved astonishing performance for semantically labeling very high resolution(VHR)remote sensing images.However,it is difficult for these models to capture the precise outlines of ground objects and explore the context information that revealing relationships among image objects for optimizing segmentation results.Consequently,this study proposes a semantic segmentation method for VHR images by incorporating deep learning semantic segmentation model(DeepLabv3+)and objectbased image analysis(OBIA),wherein DSM is employed to provide geometric information to enhance the interpretation of VHR images.The proposed method first obtains two initial probabilistic labeling predictions using a DeepLabv3+network on spectral image and a random forest(RF)classifier on hand-crafted features,respectively.These two predictions are then integrated by Dempster-Shafer(D-S)evidence theory to be fed into an object-constrained higher-order conditional random field(CRF)framework to estimate the final semantic labeling results with the consideration of the spatial contextual information.The proposed method is applied to the ISPRS 2D semantic labeling benchmark,and competitive overall accuracies of 90.6%and 85.0%are achieved for Vaihingen and Potsdam datasets,respectively.
文摘The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.
基金supported by the Deanship of Research and Graduate Studies at King Khalid University under Small Research Project grant number RGP1/139/45.
文摘Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.
基金Supported by Grant-in-Aid for Research on Hepatitis from the Japan Agency for Medical Research and Development,No.24fk0210128h0002Grant-in-Aid for Scientific Research,No.KAKENHI-23K07372.
文摘BACKGROUND Congestive hepatopathy,also known as nutmeg liver,is liver damage secondary to chronic heart failure(HF).Its morphological characteristics in terms of medical imaging are not defined and remain unclear.AIM To leverage machine learning to capture imaging features of congestive hepatopathy using incidentally acquired computed tomography(CT)scans.METHODS We retrospectively analyzed 179 chronic HF patients who underwent echocardiography and CT within one year.Right HF severity was classified into three grades.Liver CT images at the paraumbilical vein level were used to develop a ResNet-based machine learning model to predict tricuspid regurgitation(TR)severity.Model accuracy was compared with that of six gastroenterology and four radiology experts.RESULTS In the included patients,120 were male(mean age:73.1±14.4 years).The accuracy of the results predicting TR severity from a single CT image for the machine learning model was significantly higher than the average accuracy of the experts.The model was found to be exceptionally reliable for predicting severe TR.CONCLUSION Deep learning models,particularly those using ResNet architectures,can help identify morphological changes associated with TR severity,aiding in early liver dysfunction detection in patients with HF,thereby improving outcomes.
文摘Corporate image is the external manifestation of a company’s cultural and spiritual essence,as well as the overall impression formed through its interactions with the public.Huawei,as a successful multinational enterprise,has established a robust corporate image in the international market through technological innovation and brand building.Moreover,Huawei’s development is closely aligned with national policies and strategies,making it a representative enterprise for showcasing China’s technological independence and national image.This study examines Huawei’s English press releases on product launches published between 2022 and 2024 and conducts a comparative analysis with similar materials from Apple’s official website.Based on Fairclough’s three-dimensional discourse analysis model,this research explores the linguistic features of Huawei’s corporate image construction from the perspectives of text,discourse practice,and social practice.The findings reveal that Huawei has successfully constructed a corporate image that emphasizes technological innovation,prioritizes user needs,and underscores its identity as a national enterprise.This study not only sheds light on Huawei’s strategies for image construction in international competition but also provides a valuable reference for Chinese enterprises in their cultural communication and brand building during the globalization process.
文摘Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.
基金supported by the Wuhan University Undergraduate Project of Innovation and Entrepreneurship Training“The Evolution of Cartoon Images of Pandas in Western Media’s China-Related News From the Perspective of Multimodal Theory”(Project Number:S202410486013).
文摘Applying visual grammar theory,this study examines representational,interactive,and compositional meanings of the giant panda in Western media cartoons related to China from 1999 to the present.Distinct phases in the panda’s representation were identified and illustrated by cases of cartoons in major Western media.These phases trace shift of panda cartoon image from a symbol of peace and friendliness to a politicized emblem of China’s international stance.Key visual trends,such as transitivity,color symbolism,scale enlargement,and increasing compositional complexity,embody the panda’s role in shaping China’s global image and its function in international discourse.These trends reflect the panda’s transformation into a contested symbol,which mediates between China’s self-representation and Western perceptions of its geopolitical rise.By situating the analysis within the context of China’s growing global influence,this study contributes to visual and media studies,demonstrating how cultural symbols are recontextualized to reflect and shape geopolitical narratives.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
基金This work was supported in part by the National Key Basic Research and Development Program of China[grant number 2013CB733404]the National Natural Science Foundation of China[grant number 61271401],[grant number 91338113].
文摘Unmanned aerial vehicle(UAV)-based imaging systems have many superiorities compared with other platforms,such as high flexibility and low cost in collecting images,providing wide application prospects.However,the acquisition of the UAV-based image commonly results in very high resolution and very large-scale images,which poses great challenges for subsequent applications.Therefore,an efficient representation of large-scale UAV images is necessary for the extraction of the required information in a reasonable time.In this work,we proposed a multi-scale hierarchical representation,i.e.binary partition tree,for analyzing large-scale UAV images.More precisely,we first obtained an initial partition of images by an oversegmentation algorithm,i.e.the simple linear iterative clustering.Next,we merged the similar superpixels to build an object-based hierarchical structure by fully considering the spectral and spatial information of the superpixels and their topological relationships.Moreover,objects of interest and optimal segmentation were obtained using object-based analysis methods with the hierarchical structure.Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake and the mosaic of images in the South-west of Munich demonstrate the effectiveness and efficiency of our proposed method.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070503)the National Key Research and Development Program of China(2021YFD1500100)+2 种基金the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University (20R04)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(CASPLOS-CCSI)a PhD studentship ‘‘Deep Learning in massive area,multi-scale resolution remotely sensed imagery”(EAA7369),sponsored by Lancaster University and Ordnance Survey (the national mapping agency of Great Britain)。
文摘Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
基金Supported by National Natural Science Foundation of China(No.82020108006,No.81730025).
文摘AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
基金Supported by Research and Development Foundation for Major Science and Technology from Shenyang,No.19-112-4-105Big Data Foundation for Health Care from China Medical University,No.HMB201902105Natural Fund Guidance Plan from Liaoning,No.2019-ZD-0743.
文摘BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.
基金Supported by Interdisciplinary Program of Shanghai Jiao Tong University,No.YG2024 LC01National Natural Science Foundation of China,No.62406190.
文摘Confocal laser endomicroscopy(CLE)has become an indispensable tool in the diagnosis and detection of gastrointestinal(GI)diseases due to its high-resolution and high-contrast imaging capabilities.However,the early-stage imaging changes of gastrointestinal disorders are often subtle,and traditional medical image analysis methods rely heavily on manual interpretation,which is time-consuming,subject to observer variability,and inefficient for accurate lesion identification across large-scale image datasets.With the introduction of artificial intelligence(AI)technologies,AI-driven CLE image analysis systems can automatically extract pathological features and have demonstrated significant clinical value in lesion recognition,classification diagnosis,and malignancy prediction of GI diseases.These systems greatly enhance diagnostic efficiency and early detection capabilities.This review summarizes the applications of AI-assisted CLE in GI diseases,analyzes the limitations of current technologies,and explores future research directions.It is expected that the deep integration of AI and confocal imaging technologies will provide strong support for precision diagnosis and personalized treatment in the field of gastrointestinal disorders.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.
基金supported by National Natural Science Foundation of China(Nos.91220301,61175064 and 61273314)Postdoctoral Science Foundation of Central South University(No.126648)New Teacher Fund for School of Information Science and Engineering,Central South University(No.2012170301)
文摘We present two haze removal algorithms for single image based on haziness analysis.One algorithm regards haze as the veil layer,and the other takes haze as the transmission.The former uses the illumination component image obtained by retinex algorithm and the depth information of the original image to remove the veil layer.The latter employs guided filter to obtain the refined haze transmission and separates it from the original image.The main advantages of the proposed methods are that no user interaction is needed and the computing speed is relatively fast.A comparative study and quantitative evaluation with some main existing algorithms demonstrate that similar even better quality results can be obtained by the proposed methods.On the top of haze removal,several applications of the haze transmission including image refocusing,haze simulation,relighting and 2-dimensional(2D)to 3-dimensional(3D) stereoscopic conversion are also implemented.