In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
The serious competition environment of global marke t requests the enterprise to change traditional product development strategy and a dopt new theory in order to meet diverse customer needs while maintaining near m a...The serious competition environment of global marke t requests the enterprise to change traditional product development strategy and a dopt new theory in order to meet diverse customer needs while maintaining near m ass production efficiency, which is the main philosophy of mass customization. P roduct family design is research focus at present and also is the core technolog y of DFMC (design for mass customization). Firstly, this paper explores the fund amental issues of product family, such as concepts of modularity, commonality/di versity, product platform and product family architecture etc. We compare the te rminology between product family and object-oriented approach in the next step. Thirdly, this paper puts forwards one product family design methodology based o n product platform and under different phase of product life cycle constrains, f or example, functional, assembly and service etc. At the end section of this pap er, we applied, the object-oriented approach in above mentioned product family design methodology to realize the design process. In one word, this paper propos ed one product family design methodology based on object oriented approach and p roduct life cycle consideration, especially the conjointness of characteristic o f OOA and concepts of product family. The main property of OOA are encapsulation , inherence and polymorphism. Encapsulation can represent the module or building blocks of product family. Inherence can be extended to describe the modularity and commonality, and also be used to construct variant space. Alternative specif ic of product family architecture can be embodied with polymorphism. And fin aly, we give the future work contents. In order to derive the product platform a nd achieve modularity and commonality/diversity, interface management between bu ilding block is necessary. The question is how the OOA can be applied in interfa ce management to get our aim OOA is the basis of many information management sy stem, then the question is how to build one system to manage the information of product family and support mass customization The third question is how to deve lop one computer aided tool to facilitate the application of OOA for product fam ily design, even be used to category of design for mass customization.展开更多
To improve the reusable and configurable ability of computer numerical control ( CNC ) software, a new method to construct reusable model of CNC software with object-oriented (OO) technology is proposed. Based on anal...To improve the reusable and configurable ability of computer numerical control ( CNC ) software, a new method to construct reusable model of CNC software with object-oriented (OO) technology is proposed. Based on analyzing function of CNC software, the article presents how to construct a general class library of CNC software with OO technology. Most function modules of CNC software can he reused because of inheritable capability of classes. Besides, the article analyzes the object relational model in request/report mode, and multitask concurrent management model, which can he applied on double-CPU hardware platform and Windows 95/NT environment. Finally, the method has been successfully applied on a turning CNC system and a milling CNC system, and some function modules have been reused.展开更多
The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set u...The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set up adaptive C2 teams. In this paper, the relational problems about distributed C2 organizational structure adaptation are discussed, and the methodology for team decision making design based on the object oriented technique is studied.展开更多
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a sof...Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.展开更多
Inhibiting dendrites formation and side-reactions is a critical challenge for practical application of aqueous Zn-ion batteries(AZIBs).Electrolyte additives offer an effective solution to address this problem.Inspired...Inhibiting dendrites formation and side-reactions is a critical challenge for practical application of aqueous Zn-ion batteries(AZIBs).Electrolyte additives offer an effective solution to address this problem.Inspired by using green corrosion inhibitor for metals,we introduce caffeine,extracted from tea-leaf,as an additive to achieve stable AZIBs.Caffeine,with its N and O containing groups,strongly adsorbs on the Zn anode and Zn^(2+)ions.This featured adsorption induces the replacement of water molecules from electric double layer(EDL)and solvation shell,suppressing side-reactions such as corrosion and hydrogen evolution reaction(HER).Moreover,the selective adsorption and steric hindrance of caffeine promote Zn(002)-oriented deposition,resulting in uniform and compact zinc deposits at both low and high current density and areal capacity.Due to the significantly suppressed dendrites and corrosion,the Coulomb Efficiency(CE)reaches 99.24%after 800 cycles,and the Zn||MnO_(2)battery shows a specific capacity of 167.2 mAh g^(−1)with 81%capacity retention after 1000 cycles at 2 A g^(−1).展开更多
For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of the...For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.展开更多
Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are co...Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment inconsistencies.To overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object detection.The ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter efficiency.These improvements empower the model to accurately detect objects across varying scales.The ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box coherence.This approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection accuracy.Comprehensive evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection models.These findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.展开更多
In recent years,service computing has been widely integrated into software development.Web service development,especially under the RESTful schema,needs to guide students in transferring from object-oriented to resour...In recent years,service computing has been widely integrated into software development.Web service development,especially under the RESTful schema,needs to guide students in transferring from object-oriented to resource-oriented architectural thinking and cultivating students’literacy in design thinking,design patterns,and development methods.This paper introduces the foundations of service thinking with a brief review of service sciences,the core features of service thinking,and how to train service thinking of students.It also introduces a case study in Shandong University in the construction of a service computing curriculum system,especially how to highlight the cultivation of service thinking in the design of service software system.展开更多
Rail positioning is a critical step for detecting rail defects downstream.However,existing orientation-based detectors struggle to effectively manage rails with arbitrary inclinations and high aspect ratios,particular...Rail positioning is a critical step for detecting rail defects downstream.However,existing orientation-based detectors struggle to effectively manage rails with arbitrary inclinations and high aspect ratios,particularly in turnout sections.To address these challenges,a fuzzy boundary guidance and oriented Gaussian function-based anchor-free network termed the rail positioning network(RP-Net)is proposed for rail positioning in turnout sections.First,an oriented Gaussian function-based label generation strategy is introduced.This strategy produces smoother and more accu-rate label values by accounting for the specific aspect ratios and orientations of the rails.Second,a fuzzy boundary learning module is developed to enhance the network’s abil-ity to model the rail boundary regions effectively.Further-more,a boundary guidance module is developed to direct the network in fusing the features obtained from the downs-ampled network output with the boundary region features,which have been enhanced to contain more refined posi-tional and structural information.A local channel attention mechanism is integrated into this module to identify critical channels.Finally,experiments conducted on the tracking dataset show that the proposed RP-Net achieves high posi-tioning accuracy and demonstrates strong adaptability in complex scenarios.展开更多
Extracting ethanol from aqueous solutions is important but challenging in industry.Pervaporation membranes show great promise for separating ethanol from water,with the design of their structure being crucial for enha...Extracting ethanol from aqueous solutions is important but challenging in industry.Pervaporation membranes show great promise for separating ethanol from water,with the design of their structure being crucial for enhancing performance.In this study,we developed an oriented bimetallic metal-organic framework(MOF)membrane,designated as ZIF-CoZn,for the pervaporation separation of ethanol from water.During crystal growth,bimetallic salts provide specific nucleation sites,and the competitive coordination between Co and Zn ions shifts the energetically favorable(100)plane to the(211)plane.This orientation enables precise molecular-level control over hydrophobic ligand arrangement,effectively repelling water molecules.Meanwhile,bimetallic competition enlarges pore sizes,facilitating ethanol permeation.When compared to single-metal MOF membranes made of cobalt or zinc,the separation factor of the ZIF-CoZn membrane for ethanol/water mixtures increased by 127%and 160%,respectively.Benefiting from the high roughness and increased exposure of hydrophobic ligands due to the preferential(211)orientation,ZIF-CoZn exhibits superhydrophobicity after vinyl-polydimethylsiloxane coating.The oriented ZIF-CoZn membrane was also scaled up to an area of 1 m^(2).This work provides valuable insights into optimizing MOF membrane structure and lays the foundation for its promotion and application in the industry.展开更多
To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportatio...To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportation majors,guided by surveying employment.This paper proposes three integration paths for practical teaching and education in civil engineering and transportation majors under the employment orientation.The first path is to create a modularized and informatized curriculum system.The second path is to deepen diverse cooperative practices between schools and enterprises.The third path is to construct a diversified quality evaluation system for academic achievement.To ensure the quality of education and employment,schools should continuously evaluate and reflect on the practical effects of these three paths to further optimize them.展开更多
This paper focuses on Distributed Object Oriented Software Engineering over Internet, which is a way to build software culture. We believe that our work will contribute to better understanding of how to meet the nee...This paper focuses on Distributed Object Oriented Software Engineering over Internet, which is a way to build software culture. We believe that our work will contribute to better understanding of how to meet the needs of the big potential software market and to promote the software industry in developing country. The United States and Western Europe have well established software industry and related civilization. Software science, technology, and engineering are needed in China; however, maybe what is needed, first of all, is software civilization, including software ideas, customs, skills, arts, etc. We will draw a framework for the software culture as following: Software is the most important commodity in this age; Brilliance of hardware component era has become past fact; A software component era is ahead; Traditional linear process model is obsolete; Modern software engineering has a new face, object evolution model; Distributed object oriented software engineering over Internet is an approach to software component era; and Complete software civilization will be formed all over the world in next century.展开更多
The evolution of energy storage technology has seen remarkable progress,with a shift from pure metals to sophisticated,tailor-made active materials.The synthesis of nanostructures with exceptional properties is crucia...The evolution of energy storage technology has seen remarkable progress,with a shift from pure metals to sophisticated,tailor-made active materials.The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials.In this regard,our study highlights the fabrication of a novel,oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process.This innovative approach leads to the formation of the Zn-Mn-Cotelluride@CuO@Cu heterostructure,which demonstrates the unique oriented morphology.It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity,increased redox activity,higher specific capacity,and improved ion diffusion characteristics.The conductivity enhancements of the heterostructure are corroborated by density functional theory(DFT)calculations.When utilized in a hybrid supercapacitor(HSC)alongside activated carbon(AC)electrodes,the Zn-Mn-Co-telluride@CuO@Cu heterostructurebased HSC achieves an energy density of 75.7 Wh kg^(-1).Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices.展开更多
Compared with sintered silicon carbides(SiC),highly-orientated 3C-SiC by CVD methods boast out-of-plane orientation uniformity,which ensures that such materials produce lower surface damage.Through the electrolytic in...Compared with sintered silicon carbides(SiC),highly-orientated 3C-SiC by CVD methods boast out-of-plane orientation uniformity,which ensures that such materials produce lower surface damage.Through the electrolytic in-process dressing(ELID)grinding technique,the differences in grinding behaviors between<110>and<111>-orientated 3C-SiC were investigated.Both highly-orientated 3C-SiC exhibited a grinding surface where brittle and ductile removal coexisted.Specifically,brittle removal regions were observed at grain boundaries,while ductile removal regions were observed within the grains.Further indentation experiments between the two 3C-SiC show that<111>-oriented 3C-SiC displays a larger critical cut depth of 28.99 nm,with 1.5 times higher than that of<110>-oriented 3C-SiC.The larger critical depth of cut contributes to more ductile removal regions with only a few brittle pits in the<111>-oriented 3C-SiC grinding surface.In addition,the subsurface deformation of<110>-oriented 3C-SiC was characterized by the presence of amorphous zones,dislocations and stacking faults.In contrast to the<111>-oriented,the<110>-oriented 3C-SiC tends to exhibit a brittle removal mode dominated by pits and cracks at the twin boundaries,as its pre-existing twins hinder the dislocation glide,resulting in stress concentration and thus forming cracks.展开更多
Aqueous zinc-ion batteries(AZIBs)are facing the challenges of low stability of Zn anodes with dendrite growth and hydrogen evolution reaction in promoting commercial applications.We report herein a dualconfiguration b...Aqueous zinc-ion batteries(AZIBs)are facing the challenges of low stability of Zn anodes with dendrite growth and hydrogen evolution reaction in promoting commercial applications.We report herein a dualconfiguration bifunctional DL-citrulline(DL-Cit)as an electrolyte additive to stabilize Zn anodes for ultralong cycle-life aqueous energy storage.Trace amounts of DL-Cit reconstruct the solvation structure of Zn^(2+)via strong interactions with Zn^(2+),while DL-Cit is preferentially adsorbed on Zn anode surfaces to orchestrate the ion flux and ensure uniform Zn deposition.The well-formed flat Zn(002)texture not only enhances the electrochemical stability of Zn anodes but also exhibits more significant orientation priority upon increasing current density.These properties endow Zn anodes with an average coulombic efficiency of 99.7% after 1500 cycles and a long cycle life of over 3000 h,achieving an ultrahigh cumulative plating capacity of 4.8 Ah cm^(-2)even under rigorous plating/stripping conditions(8 mA cm^(-2)).Consequently,the Zn||MnO_(2)full cells provide a high capacity of 143.35 mA h g-1after continuous cycling for more than3000 cycles.The Zn||activated carbon hybrid capacitors with DL-Cit additives operate stably beyond30,000 cycles.This versatile electrolyte strategy provides an effective solution for the practical application of Zn-based energy storage devices.展开更多
Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of...Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of additional applications.Simultaneously,buildings remain a major contributor to global energy consumption,accounting for 40%of total energy use.Here,we for the first time endow cement with energy storage functionality by developing cement-based solid-state energy storage wallboards(CSESWs),which can utilize the ample idle surface areas of building walls to seamlessly store renewable energy from distributed photovoltaics without compromising building safety or requiring additional space.Owing to unprecedented microstructures and composition interactions,these CSESWs not only achieve a superionic conductivity of 101.1 mS cm^(−1)but also demonstrate multifunctionality,such as significant toughness,thermal insulation,lightweight,and adhesion.When integrated with asymmetrical electrodes,the CSESWs exhibit a remarkable capacitance(2778.9 mF cm^(−2))and high areal energy density(10.8 mWhcm^(−2)).Moreover,existing residential buildings renovated with our CSESWs can supply 98%of daily electricity needs,demonstrating their outstanding potential for realizing zero-carbon buildings.This study pioneers the use of cement in energy storage,providing a scalable and cost-effective pathway for sustainable construction.展开更多
Flexible transparent antennas(FTAs)are widely used in wireless transmission fields,and their technological iterations are accelerating.However,the high losses caused by materials and structures limit the development o...Flexible transparent antennas(FTAs)are widely used in wireless transmission fields,and their technological iterations are accelerating.However,the high losses caused by materials and structures limit the development of FTAs with both high light transmission and high gain,and the rapid iteration rate demands greater process flexibility,which makes it difficult for existing technologies to achieve both demands.Here,we design a novel shell-core structure composite metal mesh(CMM)FTA to achieve extremely low skin depth loss and ohmic loss using skin effect and report a novel hybrid additive manufacturing method based on electric field oriented deposition to achieve efficient and flexible manufacturing of the unique Ag/Cu core-shell structure CMM FTA.The typical sample has a light transmittance of 80%(including substrate)when the sheet resistance is 0.29Ω·sq^(-1),and has excellent bending and torsion resistance.The peak gain in the working band is as high as 5.22 dB,and the efficiency is 80%,which is close to the performance of the opaque Cu patch antenna.It also realizes smooth and stable real-time wireless transmission under bending and long-distance conditions.This method addresses the shortcomings of FTAs,namely their high cost,low manufacturing efficiency,and low performance,especially in the rapid iterative development of antennas.展开更多
Chinese consumers browsing e-commerce platforms or walking in supermarket aisles have noticed a new feature:dedicated sections for high-quality export products.Far from being a mere marketing gimmick,this trend emerge...Chinese consumers browsing e-commerce platforms or walking in supermarket aisles have noticed a new feature:dedicated sections for high-quality export products.Far from being a mere marketing gimmick,this trend emerged due to intense pressure from a slide in global demand.展开更多
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
文摘The serious competition environment of global marke t requests the enterprise to change traditional product development strategy and a dopt new theory in order to meet diverse customer needs while maintaining near m ass production efficiency, which is the main philosophy of mass customization. P roduct family design is research focus at present and also is the core technolog y of DFMC (design for mass customization). Firstly, this paper explores the fund amental issues of product family, such as concepts of modularity, commonality/di versity, product platform and product family architecture etc. We compare the te rminology between product family and object-oriented approach in the next step. Thirdly, this paper puts forwards one product family design methodology based o n product platform and under different phase of product life cycle constrains, f or example, functional, assembly and service etc. At the end section of this pap er, we applied, the object-oriented approach in above mentioned product family design methodology to realize the design process. In one word, this paper propos ed one product family design methodology based on object oriented approach and p roduct life cycle consideration, especially the conjointness of characteristic o f OOA and concepts of product family. The main property of OOA are encapsulation , inherence and polymorphism. Encapsulation can represent the module or building blocks of product family. Inherence can be extended to describe the modularity and commonality, and also be used to construct variant space. Alternative specif ic of product family architecture can be embodied with polymorphism. And fin aly, we give the future work contents. In order to derive the product platform a nd achieve modularity and commonality/diversity, interface management between bu ilding block is necessary. The question is how the OOA can be applied in interfa ce management to get our aim OOA is the basis of many information management sy stem, then the question is how to build one system to manage the information of product family and support mass customization The third question is how to deve lop one computer aided tool to facilitate the application of OOA for product fam ily design, even be used to category of design for mass customization.
基金Supported by Science and Technology Development Foundation of Shanghai Science and Technology Committee(995107017)
文摘To improve the reusable and configurable ability of computer numerical control ( CNC ) software, a new method to construct reusable model of CNC software with object-oriented (OO) technology is proposed. Based on analyzing function of CNC software, the article presents how to construct a general class library of CNC software with OO technology. Most function modules of CNC software can he reused because of inheritable capability of classes. Besides, the article analyzes the object relational model in request/report mode, and multitask concurrent management model, which can he applied on double-CPU hardware platform and Windows 95/NT environment. Finally, the method has been successfully applied on a turning CNC system and a milling CNC system, and some function modules have been reused.
文摘The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set up adaptive C2 teams. In this paper, the relational problems about distributed C2 organizational structure adaptation are discussed, and the methodology for team decision making design based on the object oriented technique is studied.
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
文摘Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.
基金supported by the Foundation of Guangxi Innovation Driven Development Project Grant(AA22068080)the Science and Technology Plan of Guangxi(No.ZY22096019,ZY20220101)+1 种基金the National Natural Science Foundation of China(No.52474431)the Research Plan of International Collaboration Fund for Creative Research Teams(ICFCRT)of NSFC(No.W2441008)。
文摘Inhibiting dendrites formation and side-reactions is a critical challenge for practical application of aqueous Zn-ion batteries(AZIBs).Electrolyte additives offer an effective solution to address this problem.Inspired by using green corrosion inhibitor for metals,we introduce caffeine,extracted from tea-leaf,as an additive to achieve stable AZIBs.Caffeine,with its N and O containing groups,strongly adsorbs on the Zn anode and Zn^(2+)ions.This featured adsorption induces the replacement of water molecules from electric double layer(EDL)and solvation shell,suppressing side-reactions such as corrosion and hydrogen evolution reaction(HER).Moreover,the selective adsorption and steric hindrance of caffeine promote Zn(002)-oriented deposition,resulting in uniform and compact zinc deposits at both low and high current density and areal capacity.Due to the significantly suppressed dendrites and corrosion,the Coulomb Efficiency(CE)reaches 99.24%after 800 cycles,and the Zn||MnO_(2)battery shows a specific capacity of 167.2 mAh g^(−1)with 81%capacity retention after 1000 cycles at 2 A g^(−1).
文摘For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.
基金supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010).
文摘Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment inconsistencies.To overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object detection.The ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter efficiency.These improvements empower the model to accurately detect objects across varying scales.The ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box coherence.This approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection accuracy.Comprehensive evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection models.These findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.
基金the support provided by the“New 20 Regulations for Universities”funding program of Jinan(202228089)the TaiS han Industrial Experts Programme(tscx202312128)。
文摘In recent years,service computing has been widely integrated into software development.Web service development,especially under the RESTful schema,needs to guide students in transferring from object-oriented to resource-oriented architectural thinking and cultivating students’literacy in design thinking,design patterns,and development methods.This paper introduces the foundations of service thinking with a brief review of service sciences,the core features of service thinking,and how to train service thinking of students.It also introduces a case study in Shandong University in the construction of a service computing curriculum system,especially how to highlight the cultivation of service thinking in the design of service software system.
基金Major Scientific Research Projects of China Railway Group(No.K2019G046)the National Key Research and Devel-opment Program of China(No.2020YFB1600700).
文摘Rail positioning is a critical step for detecting rail defects downstream.However,existing orientation-based detectors struggle to effectively manage rails with arbitrary inclinations and high aspect ratios,particularly in turnout sections.To address these challenges,a fuzzy boundary guidance and oriented Gaussian function-based anchor-free network termed the rail positioning network(RP-Net)is proposed for rail positioning in turnout sections.First,an oriented Gaussian function-based label generation strategy is introduced.This strategy produces smoother and more accu-rate label values by accounting for the specific aspect ratios and orientations of the rails.Second,a fuzzy boundary learning module is developed to enhance the network’s abil-ity to model the rail boundary regions effectively.Further-more,a boundary guidance module is developed to direct the network in fusing the features obtained from the downs-ampled network output with the boundary region features,which have been enhanced to contain more refined posi-tional and structural information.A local channel attention mechanism is integrated into this module to identify critical channels.Finally,experiments conducted on the tracking dataset show that the proposed RP-Net achieves high posi-tioning accuracy and demonstrates strong adaptability in complex scenarios.
基金the funding from the National Key Research and Development Program of China(No.2022YFB3804802)the National Natural Science Foundation of China(22125801,22478012)Beijing Natural Science Foundation(Z230023)。
文摘Extracting ethanol from aqueous solutions is important but challenging in industry.Pervaporation membranes show great promise for separating ethanol from water,with the design of their structure being crucial for enhancing performance.In this study,we developed an oriented bimetallic metal-organic framework(MOF)membrane,designated as ZIF-CoZn,for the pervaporation separation of ethanol from water.During crystal growth,bimetallic salts provide specific nucleation sites,and the competitive coordination between Co and Zn ions shifts the energetically favorable(100)plane to the(211)plane.This orientation enables precise molecular-level control over hydrophobic ligand arrangement,effectively repelling water molecules.Meanwhile,bimetallic competition enlarges pore sizes,facilitating ethanol permeation.When compared to single-metal MOF membranes made of cobalt or zinc,the separation factor of the ZIF-CoZn membrane for ethanol/water mixtures increased by 127%and 160%,respectively.Benefiting from the high roughness and increased exposure of hydrophobic ligands due to the preferential(211)orientation,ZIF-CoZn exhibits superhydrophobicity after vinyl-polydimethylsiloxane coating.The oriented ZIF-CoZn membrane was also scaled up to an area of 1 m^(2).This work provides valuable insights into optimizing MOF membrane structure and lays the foundation for its promotion and application in the industry.
基金Ministry of Education Supply and Demand Matching Employment Education Project,“Exploration and Practice of School-Enterprise Co-Education of Surveying and Mapping Professionals Under the Background of Industry-Education Integration”(Project No.:2024010250340)。
文摘To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportation majors,guided by surveying employment.This paper proposes three integration paths for practical teaching and education in civil engineering and transportation majors under the employment orientation.The first path is to create a modularized and informatized curriculum system.The second path is to deepen diverse cooperative practices between schools and enterprises.The third path is to construct a diversified quality evaluation system for academic achievement.To ensure the quality of education and employment,schools should continuously evaluate and reflect on the practical effects of these three paths to further optimize them.
文摘This paper focuses on Distributed Object Oriented Software Engineering over Internet, which is a way to build software culture. We believe that our work will contribute to better understanding of how to meet the needs of the big potential software market and to promote the software industry in developing country. The United States and Western Europe have well established software industry and related civilization. Software science, technology, and engineering are needed in China; however, maybe what is needed, first of all, is software civilization, including software ideas, customs, skills, arts, etc. We will draw a framework for the software culture as following: Software is the most important commodity in this age; Brilliance of hardware component era has become past fact; A software component era is ahead; Traditional linear process model is obsolete; Modern software engineering has a new face, object evolution model; Distributed object oriented software engineering over Internet is an approach to software component era; and Complete software civilization will be formed all over the world in next century.
基金supported by the Hong Kong Research Grants Council(No.CityU 11201522).
文摘The evolution of energy storage technology has seen remarkable progress,with a shift from pure metals to sophisticated,tailor-made active materials.The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials.In this regard,our study highlights the fabrication of a novel,oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process.This innovative approach leads to the formation of the Zn-Mn-Cotelluride@CuO@Cu heterostructure,which demonstrates the unique oriented morphology.It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity,increased redox activity,higher specific capacity,and improved ion diffusion characteristics.The conductivity enhancements of the heterostructure are corroborated by density functional theory(DFT)calculations.When utilized in a hybrid supercapacitor(HSC)alongside activated carbon(AC)electrodes,the Zn-Mn-Co-telluride@CuO@Cu heterostructurebased HSC achieves an energy density of 75.7 Wh kg^(-1).Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices.
基金the Central Guidance on Local Science and Technology Development Fund of Hubei Province(No.2022BFE002)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-06)the National Natural Science Foundation of China(Nos.52002075 and 62204179)。
文摘Compared with sintered silicon carbides(SiC),highly-orientated 3C-SiC by CVD methods boast out-of-plane orientation uniformity,which ensures that such materials produce lower surface damage.Through the electrolytic in-process dressing(ELID)grinding technique,the differences in grinding behaviors between<110>and<111>-orientated 3C-SiC were investigated.Both highly-orientated 3C-SiC exhibited a grinding surface where brittle and ductile removal coexisted.Specifically,brittle removal regions were observed at grain boundaries,while ductile removal regions were observed within the grains.Further indentation experiments between the two 3C-SiC show that<111>-oriented 3C-SiC displays a larger critical cut depth of 28.99 nm,with 1.5 times higher than that of<110>-oriented 3C-SiC.The larger critical depth of cut contributes to more ductile removal regions with only a few brittle pits in the<111>-oriented 3C-SiC grinding surface.In addition,the subsurface deformation of<110>-oriented 3C-SiC was characterized by the presence of amorphous zones,dislocations and stacking faults.In contrast to the<111>-oriented,the<110>-oriented 3C-SiC tends to exhibit a brittle removal mode dominated by pits and cracks at the twin boundaries,as its pre-existing twins hinder the dislocation glide,resulting in stress concentration and thus forming cracks.
基金financially supported by the National Natural Science Foundation of China(22375170,21875111)the Tan Kah Kee Innovation Laboratory(HRTP-[2022]-45)the Plans for the Recruitment of Top-notch Talent by Fujian Province and Xiamen City。
文摘Aqueous zinc-ion batteries(AZIBs)are facing the challenges of low stability of Zn anodes with dendrite growth and hydrogen evolution reaction in promoting commercial applications.We report herein a dualconfiguration bifunctional DL-citrulline(DL-Cit)as an electrolyte additive to stabilize Zn anodes for ultralong cycle-life aqueous energy storage.Trace amounts of DL-Cit reconstruct the solvation structure of Zn^(2+)via strong interactions with Zn^(2+),while DL-Cit is preferentially adsorbed on Zn anode surfaces to orchestrate the ion flux and ensure uniform Zn deposition.The well-formed flat Zn(002)texture not only enhances the electrochemical stability of Zn anodes but also exhibits more significant orientation priority upon increasing current density.These properties endow Zn anodes with an average coulombic efficiency of 99.7% after 1500 cycles and a long cycle life of over 3000 h,achieving an ultrahigh cumulative plating capacity of 4.8 Ah cm^(-2)even under rigorous plating/stripping conditions(8 mA cm^(-2)).Consequently,the Zn||MnO_(2)full cells provide a high capacity of 143.35 mA h g-1after continuous cycling for more than3000 cycles.The Zn||activated carbon hybrid capacitors with DL-Cit additives operate stably beyond30,000 cycles.This versatile electrolyte strategy provides an effective solution for the practical application of Zn-based energy storage devices.
基金supported by National Natural Science Foundation of China(52250010,52050128,52201242)the Natural Science Foundation of Jiangsu Province(BK20230086 and BK20240179).
文摘Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of additional applications.Simultaneously,buildings remain a major contributor to global energy consumption,accounting for 40%of total energy use.Here,we for the first time endow cement with energy storage functionality by developing cement-based solid-state energy storage wallboards(CSESWs),which can utilize the ample idle surface areas of building walls to seamlessly store renewable energy from distributed photovoltaics without compromising building safety or requiring additional space.Owing to unprecedented microstructures and composition interactions,these CSESWs not only achieve a superionic conductivity of 101.1 mS cm^(−1)but also demonstrate multifunctionality,such as significant toughness,thermal insulation,lightweight,and adhesion.When integrated with asymmetrical electrodes,the CSESWs exhibit a remarkable capacitance(2778.9 mF cm^(−2))and high areal energy density(10.8 mWhcm^(−2)).Moreover,existing residential buildings renovated with our CSESWs can supply 98%of daily electricity needs,demonstrating their outstanding potential for realizing zero-carbon buildings.This study pioneers the use of cement in energy storage,providing a scalable and cost-effective pathway for sustainable construction.
基金supported by the National Natural Science Foundation of China(Grant Nos.52375348 and 52175331)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020ZD04 and ZR2022ME014).
文摘Flexible transparent antennas(FTAs)are widely used in wireless transmission fields,and their technological iterations are accelerating.However,the high losses caused by materials and structures limit the development of FTAs with both high light transmission and high gain,and the rapid iteration rate demands greater process flexibility,which makes it difficult for existing technologies to achieve both demands.Here,we design a novel shell-core structure composite metal mesh(CMM)FTA to achieve extremely low skin depth loss and ohmic loss using skin effect and report a novel hybrid additive manufacturing method based on electric field oriented deposition to achieve efficient and flexible manufacturing of the unique Ag/Cu core-shell structure CMM FTA.The typical sample has a light transmittance of 80%(including substrate)when the sheet resistance is 0.29Ω·sq^(-1),and has excellent bending and torsion resistance.The peak gain in the working band is as high as 5.22 dB,and the efficiency is 80%,which is close to the performance of the opaque Cu patch antenna.It also realizes smooth and stable real-time wireless transmission under bending and long-distance conditions.This method addresses the shortcomings of FTAs,namely their high cost,low manufacturing efficiency,and low performance,especially in the rapid iterative development of antennas.
文摘Chinese consumers browsing e-commerce platforms or walking in supermarket aisles have noticed a new feature:dedicated sections for high-quality export products.Far from being a mere marketing gimmick,this trend emerged due to intense pressure from a slide in global demand.