期刊文献+
共找到4,130篇文章
< 1 2 207 >
每页显示 20 50 100
A Novel Reliable and Trust Objective Function for RPL-Based IoT Routing Protocol
1
作者 Mariam A.Alotaibi Sami S.Alwakeel Aasem N.Alyahya 《Computers, Materials & Continua》 2025年第2期3467-3497,共31页
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the... The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF). 展开更多
关键词 IOT LLNs RPL objective function OF MRHOF OF0 routing metrics RELIABILITY trustworthiness
在线阅读 下载PDF
OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION 被引量:5
2
作者 Tadeusz ANTCZAK 《Acta Mathematica Scientia》 SCIE CSCD 2017年第4期1133-1150,共18页
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult... In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. 展开更多
关键词 nonsmooth multiobjective programming problem with the multiple interval- objective function Fritz John necessary optimality conditions Karush-Kuhn- Tucker necessary optimality conditions (weakly) LU-efficient solution Mond- Weir duality
在线阅读 下载PDF
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:4
3
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production Optimization efficiency Streamline simulation Streamline feature objective function Bayesian adaptive direct search algorithm
原文传递
Reactor Network Synthesis Based on Instantaneous Objective Function Characteristic Curves 被引量:2
4
作者 张治山 赵文 +2 位作者 王艳丽 周传光 袁希钢 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第4期436-440,共5页
It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions... It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space. 展开更多
关键词 reactor network synthesis instantaneous objective function PARTITION
在线阅读 下载PDF
SELECTION OF OBJECTIVE FUNCTIONS AND APPLICATION OF GENETIC ALGORITHMS IN DAMPING DESIGN OF PIPE SYSTEM 被引量:1
5
作者 ChenYanqiu FanQinsban ZhuZigen 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期171-178,共8页
The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functio... The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement. 展开更多
关键词 objective function genetic algorithms OPTIMIZATION pipe system
在线阅读 下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
6
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
在线阅读 下载PDF
FUZZY IDENTIFICATION METHOD BASED ON A NEW OBJECTIVE FUNCTION
7
作者 王宏伟 贺汉根 黄柯棣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期162-166,共5页
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the sys... A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy. 展开更多
关键词 objective function fuzzy clustering fuzzy identification non linear systems
在线阅读 下载PDF
Experimental Evaluation of Objective Functions for Well-balanced Mapping
8
作者 Chen Delai Xu Hong Zhou Ying and Zhang Defu(Department of Computer Science and Technology Nailing University, Naming 210093, P. R. China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期312-316,共5页
High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among th... High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among them. Mapping is the technology to partition the problem domain wellbalanced into multiple distinct execution tasks based on some measures. In mapping, a good objective function is the criterion to guarantce the distinct execution tasks equitable. In this paper, we evaluate five categories of those existed objective functions with three different problem subjects using experiments and find an objective function is much suitable for all kinds of problems. 展开更多
关键词 MAPPING Heuristic algorithm objective functions
在线阅读 下载PDF
Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models
9
作者 TIAN Fuqiang HU Hongchang +2 位作者 SUN Yu LI Hongyi LU Hui 《Chinese Geographical Science》 SCIE CSCD 2019年第6期934-948,共15页
In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies,... In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed. 展开更多
关键词 automatic calibration single-objective function MULTI-objectIVE functions Xinanjiang MODEL HYDROLOGICAL MODEL
在线阅读 下载PDF
Randomized Objective Function Linear Programming in Risk Management
10
作者 Dennis Ridley Felipe Llaugel +1 位作者 Inger Daniels Abdullah Khan 《Journal of Applied Mathematics and Physics》 2021年第3期391-402,共12页
The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one consid... The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one considers the effect of varying each objective function coefficient, one at a time. This yields the range of optimality within which the decision variables remain constant. This sensitivity analysis is useful for helping the analyst get a sense for the problem. However, it is unrealistic because objective function coefficients tend not to stand still. They are typically profit contributions from products sold and are subject to randomly varying selling prices. In this paper, a realistic linear program is created for simultaneously randomizing the coefficients from any probability distribution. Furthermore, we present a novel approach for designing a copula of random objective function coefficients according to a specified rank correlation. The corresponding distribution of objective function values is created. This distribution is examined directly for central tendency, spread, skewness and extreme values for the purpose of risk analysis. This enables risk analysis and business analytics, emerging topics in education and preparation for the knowledge economy. 展开更多
关键词 Linear Programming RANDOM objective function Profit Distribution RISK Monte Carlo Simulation
在线阅读 下载PDF
Adaptive Learning Rate Optimization BP Algorithm with Logarithmic Objective Function
11
作者 李春雨 盛昭瀚 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期47-51,共5页
This paper presents an improved BP algorithm. The approach can reduce the amount of computation by using the logarithmic objective function. The learning rate μ(k) per iteration is determined by dynamic o... This paper presents an improved BP algorithm. The approach can reduce the amount of computation by using the logarithmic objective function. The learning rate μ(k) per iteration is determined by dynamic optimization method to accelerate the convergence rate. Since the determination of the learning rate in the proposed BP algorithm only uses the obtained first order derivatives in standard BP algorithm(SBP), the scale of computational and storage burden is like that of SBP algorithm,and the convergence rate is remarkably accelerated. Computer simulations demonstrate the effectiveness of the proposed algorithm 展开更多
关键词 BP ALGORITHM ADAPTIVE LEARNING RATE optimization fault diagnosis logarithmic objective function
在线阅读 下载PDF
Structural failure analysis with CMS-based ground motion selection using innovative cost function and weight factors
12
作者 Delbaz Samadian Imrose B.Muhit Nashwan Dawood 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期899-918,共20页
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec... The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects. 展开更多
关键词 weighted objective function ground motion selection steel moment resisting frame hazard analysis
在线阅读 下载PDF
A New Augmented Lagrangian Objective Penalty Function for Constrained Optimization Problems
13
作者 Ying Zheng Zhiqing Meng 《Open Journal of Optimization》 2017年第2期39-46,共8页
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob... In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. 展开更多
关键词 CONSTRAINED Optimization Problems AUGMENTED LAGRANGIAN objective PENALTY function SADDLE POINT Algorithm
在线阅读 下载PDF
Distributed Stochastic Optimization with Compression for Non-Strongly Convex Objectives
14
作者 Xuanjie Li Yuedong Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期459-481,共23页
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p... We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios. 展开更多
关键词 Distributed stochastic optimization arbitrary compression fidelity non-strongly convex objective function
在线阅读 下载PDF
A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming
15
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2014年第6期331-339,共9页
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu... In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP. 展开更多
关键词 MULTI-objectIVE Programming PENALTY function objective PARAMETERS CONSTRAINT PENALTY Parameter PARETO Weakly-Efficient Solution
在线阅读 下载PDF
An Objective Penalty Functions Algorithm for Multiobjective Optimization Problem
16
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2011年第4期229-235,共7页
By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single obj... By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single objective optimal problem (SOOP) with inequality constrains;and it is proved that, under some conditions, an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP with objective weight value adjusted by decision maker. 展开更多
关键词 MULTIobjectIVE Optimization PROBLEM objective PENALTY function PARETO Efficient Solution INTERACTIVE ALGORITHM
在线阅读 下载PDF
VECTOR WAVE FUNCTION EXPANSION FOR SOLVING ELECTROMAGNETIC SCATTERING BY BURIED OBJECTS
17
作者 陈景养 徐鹏根 鲁述 《Journal of Electronics(China)》 1991年第3期239-246,共8页
An analysis of solving the electromagnetic scattering by buried objects using vectorwave function expansion is presented.For expanding the boundary conditions both on the planarair-earth interface and on the spherical... An analysis of solving the electromagnetic scattering by buried objects using vectorwave function expansion is presented.For expanding the boundary conditions both on the planarair-earth interface and on the spherical surface,the conversion relations between the cylindricaland spherical vector wave functions are derived.Hence the vector wave function expansion isconveniently applied to solve this complex boundary-value problem.For the excitation of the in-cident plane wave and the dipole above the earth,the scatterlng patterns of the buried conductingand dielectric spheres are presented and discussed. 展开更多
关键词 Electromagnetic scattering BURIED objects Boundary condition VECTOR WAVE function EXPANSION WAVE transformation
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
18
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于改进蚁群算法的无线传感网络路由优化方法 被引量:2
19
作者 李忠 严莉 +1 位作者 倪建军 汤嘉立 《计算机与网络》 2025年第1期67-75,共9页
为了提高传统无线传感网络路由的性能,提出基于改进蚁群算法的无线传感网络路由优化方法,包括路由控制层、SDN信息收集层和数据转发层。借助参考节点和锚节点确定未知节点位置,并根据节点位置设计优化目标函数。通过改进蚁群算法中的转... 为了提高传统无线传感网络路由的性能,提出基于改进蚁群算法的无线传感网络路由优化方法,包括路由控制层、SDN信息收集层和数据转发层。借助参考节点和锚节点确定未知节点位置,并根据节点位置设计优化目标函数。通过改进蚁群算法中的转移概率和信息素浓度,求解目标函数,获得最佳的路由方案。实验结果表明,该方法在能量消耗、传输时延、死亡节点数量和网络吞吐量等方面均有明显改善,有效提高了无线传感网络路由的性能。 展开更多
关键词 改进蚁群算法 无线传感网络 路由优化 路由模型 目标函数
在线阅读 下载PDF
基于不同目标函数的WRF-Hydro模型参数敏感性研究 被引量:1
20
作者 谷黄河 石怀轩 +2 位作者 孙敏涛 丁震 顾苏烨 《中国农村水利水电》 北大核心 2025年第1期61-69,共9页
水文与气象预报相结合可以有效提高洪水预报的精度和延长预见期,陆气耦合模型已成为水文气象学者研究的重点。WRF-Hydro模型作为新一代分布式陆气耦合模型在多尺度洪水预报中具有广阔的应用前景,但由于各物理过程参数化方案复杂,模型计... 水文与气象预报相结合可以有效提高洪水预报的精度和延长预见期,陆气耦合模型已成为水文气象学者研究的重点。WRF-Hydro模型作为新一代分布式陆气耦合模型在多尺度洪水预报中具有广阔的应用前景,但由于各物理过程参数化方案复杂,模型计算量大,对该模型的参数敏感性研究还不充分,也影响着模型的模拟精度。研究以湿润区的新安江上游屯溪流域为研究对象,构建多个单目标和多目标函数,并结合Morris全局参数敏感性分析方法,探究了WRF-Hydro模型在不同目标函数下的参数敏感性。结果表明:土壤参数(DKSAT、SMCMAX、BEXP)主要影响壤中流和地表径流,对径流量影响显著,尤其DKSAT最为敏感,直接影响水在土壤中的下渗速度,增大时基流量显著增高而洪峰流量则明显降低;产流参数(SLOPE、REFKDT)主要影响地表径流和基流分配,对洪水过程线形状有重要影响;河道汇流参数ManN影响汇流速度并主要控制峰现时间;植被参数MP对于总水量有一定影响;坡面汇流参数OVROUGHRTFAC和地下水参数Zmax则最不敏感。不同目标函数下的参数敏感性顺序和最优参数取值有一定差异,单目标函数中以相对误差为优化目标会更侧重于全年径流总量和低流量部分的模拟精度,而以效率系数和Kling-Gupta系数为目标则更侧重于场次洪水和高流量部分的模拟效果;基于几个单目标函数组合的多目标函数综合考虑了不同目标函数的影响,结果在一定程度上优于单目标函数。研究可为合理确定WRF-Hydro模型参数优化策略提供参考。 展开更多
关键词 WRF-Hydro模型 Morris法 敏感性分析 多目标函数 洪水预报
在线阅读 下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部