期刊文献+
共找到4,319篇文章
< 1 2 216 >
每页显示 20 50 100
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
1
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Numerical Simulation and Preparation of Micro-gear via Casting Forming Using Zr-based Amorphous Alloy
2
作者 Li Chunling Li Shaobing +2 位作者 Li Xiaocheng Li Chunyan Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第6期1435-1444,共10页
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit... A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness. 展开更多
关键词 Zr-based amorphous alloy MICRO-GEAR numerical simulation CASTING
原文传递
Numerical simulation and experimental investigation of manufacturing route of directional casting super slab
3
作者 Ming Li Jun Fu +5 位作者 Neng Ren Biao Tao Alan Scholes Jun Li Jian-guo Li Hong-biao Dong 《Journal of Iron and Steel Research International》 2025年第3期659-670,共12页
We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolutio... We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions. 展开更多
关键词 Super slab Directional solidification MACROSEGREGATION numerical simulation Grain structure Steel
原文传递
Numerical simulation of circulating fluidization roasting desulfurization of high-sulfur bauxite based on computational particle fluid dynamics method
4
作者 Langfeng Fan Chengming Xie +5 位作者 Qijin Wei Hongliang Zhao Rongbin Li Yongmin Zhang Fengqin Liu Hong Yong Sohn 《Chinese Journal of Chemical Engineering》 2025年第6期138-152,共15页
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s... As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated. 展开更多
关键词 FLUIDIZATION Circulating fluidized bed numerical simulation CPFD method Roasting desulfurization BAUXITE
在线阅读 下载PDF
Numerical Simulation on Depressurization-Driven Production of Class I Hydrate Deposits with Transition Layer and Perforation Modes Optimization
5
作者 Yajie Bai Jian Hou Yongge Liu 《Energy Engineering》 2025年第6期2503-2518,共16页
Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the ... Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity,a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method,and a numerical simulation model is used to describe the depressurization production performance of the reservoir.With the development of depressurization,a specific range of complete decomposition zones appear both in the hydrate and transition layers.The entire decomposition zone of the whole reservoir tends to outward and upward diffusion.There is apparent methane escape in the three-phase transition layer.Due to the improvement of local permeability caused by the phase transition of hydrate dissociation,some methane accumulation occurs at the bottom of the hydrate layer,forming a local methane enrichment zone.The methane migration trends in reservoirs are mainly characterized by movement toward production wells and hydrate layers under the influence of gravity.However,due to the permeability limitation of hydrate reservoirs,many fluids have not been effectively produced and remain in the reservoir.Therefore,to improve the effective pressure drop of the reservoir,the perforation method and pressure reduction method were optimized by analyzing the influencing factors based on the gas production rate.The comparative study demonstrates that perforating through the free gas layer combined with one-time depressurization can enhance the effective depressurization and improve production performance.The gas production rate from perforating through the free gas layer can be twice as high as that from perforating through the transition layer.This study can provide theoretical support for the utilization of marine energy. 展开更多
关键词 Class I hydrate transitional layers HETEROGENEITY DEPRESSURIZATION numerical simulation perforation mode
在线阅读 下载PDF
Dynamic Rockfall Hazard Assessment at Railway Tunnel Portal:Application of G1-FCE Method and 3D Numerical Simulation
6
作者 Shengwei Zhang Jiaxing Dong +2 位作者 Yanjun Shen Qingjun Zuo Junli Wan 《Journal of Earth Science》 2025年第3期1341-1347,共7页
0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation ph... 0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018). 展开更多
关键词 complex mountainous area hazard assessment dynamic rockfall railway tunnel portal D numerical simulation construction G FCE method southwest china
原文传递
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
7
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
Numerical Simulation and Analysis of Heat Treatment Processes on AISI 1025 Steel Produced by Laser Engineered Net Shaping
8
作者 Elphas Tum Rehema Ndeda +3 位作者 James Mutua Raghupatruni Prasad Eyitao Olakanmi Sisa Pityana 《Modeling and Numerical Simulation of Material Science》 2025年第1期1-15,共15页
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ... Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%. 展开更多
关键词 Heat Treatment Residual Stresses HARDNESS Microstructure numerical simulation
在线阅读 下载PDF
Numerical simulation of the effect of hydrogen injection and oxygen enrichment interaction on PCI in a blast furnace
9
作者 Huan Liu Li Huang +3 位作者 Zhenyang Wang Alberto N.Conejo Jianliang Zhang Dawei Lan 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1551-1565,共15页
Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized... Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal. 展开更多
关键词 blast furnace HYDROGEN pulverized coal injection BURNOUT numerical simulation
在线阅读 下载PDF
Turbulence numerical simulation of flow characteristics of Laval nozzle top blow jet
10
作者 Ai-liang CHEN Yao LIU +5 位作者 Zi-biao WANG Huan-wu ZHAN Xue-xian JIANG Feng-long SUN Jiann-yang HWANG Xi-jun ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第4期1350-1361,共12页
The turbulent characteristics of the top-blown Laval nozzle and the influence of pressure and Mach number were studied through numerical simulation.With 2.72%error between the results and the empirical formula,the res... The turbulent characteristics of the top-blown Laval nozzle and the influence of pressure and Mach number were studied through numerical simulation.With 2.72%error between the results and the empirical formula,the results are reliable.Nozzle fluid is influenced by pipe structure,causing pressure and density to drop as speed increases.Differences in pressure and velocity between the jet and surrounding gas lead to jet velocity attenuation,flow expansion,deflection,and eddy currents.The optimal top blowing pressure is 0.6 MPa,and the center velocity and width of the jet are 345 m/s and 0.124 m,respectively,at 20De(De is the nozzle exit diameter).It achieves a maximum jet velocity of 456 m/s.The optimal nozzle Mach number is 1.75,with a maximum jet velocity of 451 m/s.At 20D_(e),the jet center velocity is 338 m/s,with a width of 0.12 m. 展开更多
关键词 top blow jet numerical simulation TURBULENCE flow characteristic Laval nozzle
在线阅读 下载PDF
Numerical Simulation Method of Meshless Reservoir Considering Time-Varying Connectivity Parameters
11
作者 Yuyang Liu Wensheng Zhou +4 位作者 Zhijie Wei Engao Tang Chenyang Shi Qirui Zhang Zifeng Chen 《Energy Engineering》 2025年第10期4245-4260,共16页
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo... After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield. 展开更多
关键词 Meshless method parameters’time-varying numerical simulation production optimization block application
在线阅读 下载PDF
A three-dimensional CFD numerical simulation study on pressurized oxy-fuel gasification of poultry manure in an industrial-scale gasifier
12
作者 Qinwen Liu Guoqing Lian +4 位作者 Wenli Dong Yu Su Wei Quan Leong Chi-Hwa Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 2025年第5期115-127,共13页
As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pr... As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology. 展开更多
关键词 Oxy-fuel gasification Pressurized gasification Poultry manure Carbon negative CFD numerical simulation
在线阅读 下载PDF
Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath
13
作者 Teng Xia Xiaohui Zhang +4 位作者 Ding Ma Zhi Yang Xinting Tong Yutang Zhao Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第1期121-140,共20页
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas... Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region. 展开更多
关键词 Copper smelting bottom-blown melting furnace flow characteristics temperature distribution numerical simulation
在线阅读 下载PDF
Numerical simulation of residual stresses in hybrid welding for dissimilar girth welds of cast steel joints
14
作者 JIAO Haihan JIN Hui +1 位作者 FAN Yongchun XU Lu 《Journal of Southeast University(English Edition)》 2025年第3期305-313,共9页
The study aimed to address the issue of elevated residual stress levels in dissimilar girth welds of cast steel joints.To achieve this,the hybrid welding technology,which yields high welding speeds while simultaneousl... The study aimed to address the issue of elevated residual stress levels in dissimilar girth welds of cast steel joints.To achieve this,the hybrid welding technology,which yields high welding speeds while simultaneously reducing residual stresses,has been introduced.This study utilizes a numerical simulation method to investigate the temperature and residual stress field in the hybrid welding of G20Mn5 casting-Q355 low-alloy steel welded pipe.A com-parison of the findings of this study with those of other welding processes revealed the technological advantages of hybrid welding.The research outcomes show that due to geometric discontinuities and material differences,the temperature field of the joint exhibits uneven distribution characteristics,and the peak temperatures on the Q355 steel side exceeds those on the G20Mn5 steel side.An evident stress gra-dient is present in the residual stress field of the joint post-welding,with peak stress located at the weld root on the Q355 steel.Compared with arc welding,the hybrid welding leads to decreased residual stresses and deformation,with high stress outside the heat-affected zone diminishing rapidly.Furthermore,it significantly improves the welding efficiency.This study elucidates the distribution and underlying causes of thermal and residual stress fields in dissimilar girth welds.This serves as a foundation for the application of hybrid welding technology in welded cast steel joints. 展开更多
关键词 hybrid welding cast steel dissimilar girth weld residual stress numerical simulation
在线阅读 下载PDF
Numerical simulation of combustion behaviors of pulverized municipal solid waste in raceway of blast furnace
15
作者 Yu-feng Qiao Guang Wang +2 位作者 Zhen-feng Zhou Jing-song Wang Qing-guo Xue 《Journal of Iron and Steel Research International》 2025年第9期2719-2731,共13页
To study the combustion behavior of municipal solid waste(MSW)in blast furnace,the combustion process within the raceway was simulated using computational fluid dynamics.Based on the parameters of an actual blast furn... To study the combustion behavior of municipal solid waste(MSW)in blast furnace,the combustion process within the raceway was simulated using computational fluid dynamics.Based on the parameters of an actual blast furnace,a three-dimensional model including coal lance,blowpipe,tuyere,and raceway was established.The model was then used to compare the combustion characteristics of pulverized coal and MSW in the raceway and to investigate the effects of blast temperature and particle size on the combustion characteristics of MSW in the raceway.The results showed that MSW combusted more rapidly,achieving a maximum temperature of 3839 K in the raceway,comparing to 2974 K during pulverized coal injection.However,the average temperature during MSW injection was 1790 K,which was 73 K lower than that of pulverized coal injection.The maximum velocity during MSW injection was 120 m/s,lower than 188 m/s obtained during pulverized coal injection.MSW could be completely burned out in the middle of the raceway,while the burnout of pulverized coal at this position was only 50%.The combustion effect of MSW makes no difference when the blast temperature increased from 1273 to 1673 K,due to its excellent combustion characteristic.When the MSW particle size was increased from 0.074 to 2 mm,the burnout was 75%,which was still higher than that of pulverized coal injection with a particle size of 0.074 mm.However,injecting larger-sized fuel might increase the risk of tuyere wear.To ensure stable furnace conditions and great combustion,a blast temperature of 1473 K and a MSW particle size of about 1 mm will be better. 展开更多
关键词 Municipal solid waste Pulverized coal numerical simulation Blast furnace injection COMBUSTION
原文传递
Numerical simulation 0n the influence of different median strip types in the separated highway subgrade cross section on the transport law of wind-sand flow
16
作者 ZHANG Jing LI Shengyu +1 位作者 SUN Yunlong XIA Tian 《Journal of Mountain Science》 2025年第5期1707-1722,共16页
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti... To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition. 展开更多
关键词 Highway engineering Separated subgrade Median strip numerical simulation Embankment wind-sand flow
原文传递
Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer
17
作者 Jian Yang Xinghao Gou +4 位作者 Jiayi Sun Fei Liu Xiaojin Zhou Xu Liu Tao Zhang 《Fluid Dynamics & Materials Processing》 2025年第8期1935-1954,共20页
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me... Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels. 展开更多
关键词 Proppant fractures gas-water two-phase flow numerical simulation lattice Boltzmann method flow behavior
在线阅读 下载PDF
Numerical simulation of vortex-induced vibration of deepwater drilling riser based on discrete vortex method
18
作者 Yan-Bin Wang Hong-Chuan Zhao +1 位作者 De-Li Gao Rui Li 《Petroleum Science》 2025年第5期2042-2061,共20页
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f... Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser. 展开更多
关键词 Deepwater drilling riser Vortex-induced vibration Discrete vortex method numerical simulation VIV suppression
原文传递
Seismic responses and shattering cumulative effects of bedding parallel stepped rock slope:Model test and numerical simulation
19
作者 Chunlei Xin Fei Yang +2 位作者 Wenkai Feng Zhao Wang Wenhui Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2009-2030,共22页
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu... Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes. 展开更多
关键词 Rock slope stability Shaking table test numerical simulation Permanent displacement Acceleration amplification factor
在线阅读 下载PDF
Numerical simulation for large baseline interferometric imaging altimeter
20
作者 Jie Liu Bo Liu +2 位作者 Xiaonan An Haifeng Kou Bing Li 《Geodesy and Geodynamics》 2025年第1期111-126,共16页
Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic... Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion. 展开更多
关键词 Sea topography numerical simulation Carrier frequency shift(CFS) Large baseline interferometric imaging altimeter(LB-IIA)
原文传递
上一页 1 2 216 下一页 到第
使用帮助 返回顶部