期刊文献+
共找到920篇文章
< 1 2 46 >
每页显示 20 50 100
Numerical Models and Methods of Atmospheric Parameters Originating in the Formation of the Earth’s Climatic Cycle
1
作者 Wend Dolean Arsène Ilboudo Kassoum Yamba +1 位作者 Windé Nongué Daniel Koumbem Issaka Ouédraogo 《Atmospheric and Climate Sciences》 2024年第2期277-286,共10页
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o... Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. . 展开更多
关键词 Atmospheric Parameter 1 Climatic Cycle 2 numerical models 3
在线阅读 下载PDF
Numerical Models of Higher-Order Boussinesq Equations and Comparisons with Laboratory Measurement 被引量:6
2
作者 邹志利 张晓莉 《China Ocean Engineering》 SCIE EI 2001年第2期229-240,共12页
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq... Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations. 展开更多
关键词 numerical model water wares Boussinesq equations NONLINEAR DISPERSION
在线阅读 下载PDF
Benchmarking of two three-dimensional numerical models in time/space domain to predict railway-induced ground vibrations 被引量:2
3
作者 Jesus Fernandez-Ruiz Luis E.Medina Rodriguez +1 位作者 Pedro Alves Costa Margarita Martinez-Diaz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期245-256,共12页
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa... In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering. 展开更多
关键词 railway vibrations time/space domain 3D numerical model finite difference method implicit finite element method
在线阅读 下载PDF
Zoning Evaluation of Hourly Precipitation in High-resolution Regional Numerical Models over Hainan Island 被引量:1
4
作者 冯箫 吴俞 +1 位作者 杨薇 李勋 《Journal of Tropical Meteorology》 SCIE 2023年第4期460-472,共13页
This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequen... This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island. 展开更多
关键词 Hainan Island hourly precipitation regional numerical model zoning evaluation
在线阅读 下载PDF
Numerical models of earthquake mechanism
5
作者 Ikram Atabekov 《Geodesy and Geodynamics》 CSCD 2021年第2期148-154,共7页
The tectonic creep and its variation after particular earthquakes are studied by the Stokes equation.The stress state of the region is modelled according to a hypothesis of plate tectonics in which the lithosphere of ... The tectonic creep and its variation after particular earthquakes are studied by the Stokes equation.The stress state of the region is modelled according to a hypothesis of plate tectonics in which the lithosphere of the region is laterally compressed across the Eurasian,Indian,and Arabian plates.The 1966 Tashkent(Uzbekistan)earthquake and the 1976 Gazli(Uzbekistan)earthquake are selected as examples to study different models of earthquake focal mechanisms.Based on the specifics of the geodynamic formulation,the three-dimensional equations of moment elasticity and hydromechanics are reduced to twodimensional equations for averaged stresses,displacements,and displacement velocities.The twodimensional equations are solved by boundary integral equations.The stresses can be useful in zoning maps.The vertical velocities obtained from the creep model of the earth’s crust can serve as additional data to Central Asia’s horizontal velocities from GPS measurements. 展开更多
关键词 Central Asia Stress state Earthquake mechanism numerical model Boundary element method
原文传递
Assessment of Numerical Models for Live Load Distribution in a Road Slab Bridge
6
作者 Janusz Holowaty 《Computer Technology and Application》 2013年第11期592-598,共7页
This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load d... This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations. 展开更多
关键词 numerical model bridge live load numerical modeling grillage method FE analysis
在线阅读 下载PDF
Design of Roof Cover Structures by Help of Numerical Models Defined in Formian
7
作者 Janusz Rebielak 《Journal of Civil Engineering and Architecture》 2015年第3期245-256,共12页
Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of ... Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures. 展开更多
关键词 numerical model programming language tension-strut structure roof structure dome cover.
在线阅读 下载PDF
AI models still lag behind traditional numerical models in predicting sudden-turning typhoons
8
作者 Daosheng Xu Zebin Lu +10 位作者 Jeremy Cheuk-Hin Leung Dingchi Zhao Yi Li Yang Shi Bin Chen Gaozhen Nie Naigeng Wu Xiangjun Tian Yi Yang Shaoqing Zhang Banglin Zhang 《Science Bulletin》 2025年第17期2705-2708,共4页
Given the interpretability,accuracy,and stability of numerical weather prediction(NWP)models,current operational weather forecasting relies heavily on the NWP approach[1].In the past two years,the rapid development of... Given the interpretability,accuracy,and stability of numerical weather prediction(NWP)models,current operational weather forecasting relies heavily on the NWP approach[1].In the past two years,the rapid development of Artificial Intelligence(AI)has provided an alternative solution for medium-range(1-10 d)weather forecasting. 展开更多
关键词 weather forecasting numerical models numerical weather prediction nwp modelscurrent accuracy AI models sudden turning typhoons artificial intelligence ai
原文传递
A Review on Fretting Wear Mechanisms,Models and Numerical Analyses 被引量:4
9
作者 Tongyan Yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2019年第5期405-432,共28页
Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in component... Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in components supposed to move relative to each other.Fretting wear is a complicated problem involving material properties of tribosystem and working conditions of them.Due to these various factors,researchers have studied the process of fretting wear by experiments and numerical modelling methods.This paper reviews recent literature on the numerical modelling method of fretting wear.After a briefly introduction on the mechanism of fretting wear,numerical models,which are critical issues for fretting wear modelling,are reviewed.The paper is concluded by highlighting possible research topics for future work. 展开更多
关键词 Fretting wear wear models wear mechanisms numerical modelling
在线阅读 下载PDF
Key Issues in Developing Numerical Models for Artificial Weather Modification 被引量:3
10
作者 Huanbin XU Jinfang YIN 《Journal of Meteorological Research》 SCIE CSCD 2017年第6期1007-1017,共11页
The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns... The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns, dynamical pro- cesses, and microphysical processes. Now that numerical models with weather dynamical characteristics have been widely applied to artificial weather modification, several key points that should not be neglected when developing numerical models for artificial weather modification are proposed in this paper, including the dynamical equations, model resolution, cloud-precipitation microphysical processes, numerical computation method, and initial and boundary conditions. Based on several examples, approaches are offered to deal with the problems that exist in these areas. 展开更多
关键词 artificial weather modification numerical model dynamical processes cloud-precipitation microphy- sical orocesses
原文传递
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation 被引量:1
11
作者 阳志文 柳淑学 李金宣 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期1-16,共16页
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is ap... An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level. 展开更多
关键词 coupling numerical model physical model wave propagation transfer function modulation
在线阅读 下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
12
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change GRANITE
在线阅读 下载PDF
Study on short-range numerical forecasting of ocean current in the East China Sea——Ⅰ Basic problems of ocean current forecasting and structure of the models
13
作者 Zhao Jinping, Chen Zhongyong and Shi Maochong Institute of Oceanology, Academia Sinica, Qingdao 266071, China Ocean University of Qingdao, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第3期335-345,共11页
Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean... Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed. 展开更多
关键词 Current forecasting ocean circulation operational numerical forecasting numerical model the East China Sea
在线阅读 下载PDF
Pulse cleaning flow models and numerical computation of candle ceramic filters
14
作者 Tian, Gui-shan Ma, Zhen-ji +1 位作者 Zhang, Xin-yi Xu, Ting-xiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期210-215,共6页
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cle... Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained. 展开更多
关键词 candle ceramic filters reverse pulse cleaning face velocity numerical computed models pressure difference
在线阅读 下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
15
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
Numerical Investigations on Evolution Characteristics of Sand Waves Under Current and Waves at Various Interaction Angles
16
作者 ZANG Zhi-peng TIAN Rui +2 位作者 ZOU Xing XIE Bo-tao ZHANG Jin-feng 《China Ocean Engineering》 2025年第4期648-661,共14页
A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for... A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for both bedload and suspended load sediment transport under combined waves and current conditions.The investigation examines the influence of several key parameters,including the rotation angle of sand waves relative to the main current,tidal current velocity amplitude,residual current,water depth,wave height,wave period,and wave direction,on sand wave evolution.The growth rate and migration rate of sand waves decrease as their rotation angle increases.For rotation angles smaller than 15°,sand wave evolution can be effectively simulated by a vertical 2D model with an error within 10%.The numerical results demonstrate that variations in tidal current velocity amplitude or residual current affect both vertical growth and horizontal migration of sand waves.As tidal current velocity amplitude and residual current increase,the growth rate initially rises to a maximum before decreasing.The migration rate shows a consistent increase with increasing tidal current amplitude and residual current.Under combined waves and current,both growth and migration rates decrease as water depth increases.With increasing wave height and period,the growth rate and migration rate initially rise to maximum values before declining,while showing a consistent increase with wave height and period.The change rate of sand waves reaches its maximum when wave propagation aligns parallel to tidal currents,and reaches its minimum when wave propagation is perpendicular to the currents.This phenomenon can be explained by the fluctuation of total bed shear stress relative to the angle of interaction between waves and current. 展开更多
关键词 sand waves 3D numerical model tidal current WAVES angles of interaction growth rate migration rate
在线阅读 下载PDF
Numerical investigation of two typical outbursts in development headings:A case study in a Chinese coalfield
17
作者 Changbin Wang Anye Cao +2 位作者 Zizhuo Xiang Chunchen Wei Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2682-2694,共13页
Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling ... Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling method,two typical types of outbursts,i.e.the gas pocket outburst and the dynamic fracturing outburst,have been successfully simulated using field data from a coalfield in central China.The geological structure commonly observed in the coalfield,known as the‘bedding shear zone’,contributes to the gas pocket outbursts in the region.The model for this type of outburst simulates mininginduced stress and gas pressure distributions during the outburst initiation stage and the subsequent development stage.Both coal ejection and gas release are observed in the model,and the simulation results are consistent with mine site observations,i.e.the amount of ejected coal,outburst cavity profile,and gas release rate change prior to an outburst.The second type of outburst is attributed to gas accumulation and elevated gas pressure due to the gassy floor seam and the heterogeneity in the floor strata,which is explained by the dynamic fracturing theory.While the dynamic coal ejection phenomenon is not captured in the simulation,the abrupt release of retained gas from a floor coal seam is successfully replicated.Both outburst models reveal that abnormal gas emission trends can be used as indicators of an upcoming outburst.The results of this study are expected to provide new insights into the outburst initiation mechanisms and outburst prevention measures. 展开更多
关键词 OUTBURST numerical modelling Gas pocket Dynamic Roadway drivage
在线阅读 下载PDF
A Succinct Review on the Numerical and Experimental Performance Evaluation Techniques for Composite Marine Propellers
18
作者 Ashok Kumar Rajagopalan Vijayakumar 《哈尔滨工程大学学报(英文版)》 2025年第2期301-322,共22页
Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or a... Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or alloys.They offer several benefits,such as high specific strength,low corrosion,delayed cavitation,improved dynamic stability,reduced noise levels,and overall energy efficiency.In addition,composite materials undergo passive deformation,termed as“bend-twist effect”,under hydrodynamic loads due to their inherent flexibility and anisotropy.Although performance analysis methods were developed in the past for marine propellers,there is a significant lack of literature on composite propellers.This article discusses the recent advancements in experimental and numerical modelling,state-of-the-art computational technologies,and mutated mathematical models that aid in designing,analysing,and optimising composite marine propellers.In the initial sections,performance evaluation methods and challenges with the existing propeller materials are discussed.Thereafter,the benefits of composite propellers are critically reviewed.Numerical and experimental FSI coupling methods,cavitation performance,the effect of stacking sequence,and acoustic measurements are some critical areas discussed in detail.A two-way FSI-coupled simulation was conducted in a non-cavitating regime for four advanced ratios and compared with the literature results.Finally,the scope for future improvements and conclusions are mentioned. 展开更多
关键词 Cavitation studies Composite propellers Hydro-elasticity numerical model Acoustics vibration
在线阅读 下载PDF
Three-dimensional numerical simulation of mixing patterns at open channel confluences
19
作者 Ali Aghazadegan Ali Shokri 《Water Science and Engineering》 2025年第2期236-246,共11页
Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ra... Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes. 展开更多
关键词 CONFLUENCE Mixing pattern numerical modelling Transverse vorticity Vertical vorticity
在线阅读 下载PDF
Numerical simulation study on the properties and source tracing of swells in the Gulf of Guinea
20
作者 Fumin Xu Hanzheng Ya Donglin Zhu 《Acta Oceanologica Sinica》 2025年第2期1-13,共13页
Swells are critical concerns regarding safety,marine transportation,and coastal engineering construction of coastal countries along the Gulf of Guinea and have been scientific problems due to the lack of systematic th... Swells are critical concerns regarding safety,marine transportation,and coastal engineering construction of coastal countries along the Gulf of Guinea and have been scientific problems due to the lack of systematic theoretical,numerical,and observational research.In this study,a double nesting numerical model was constructed and validated from the Atlantic Ocean to the Gulf of Guinea based on simulating waves nearshore(SWAN)to explore the swell characteristics and source tracing in the Gulf of Guinea in winter and summer seasons from 2020 to 2021.Simulation results reveal that swells are stronger and deflect more to the west in winter than summer,even though they dominate in both seasons in the Gulf of Guinea in the S-SW directional range.Simulated two-dimensional(2D)wave spectral patterns not only clarify wave composition,variation,and propagation properties from the central South Atlantic Ocean to the Gulf of Guinea,but also distinguish swell strength and directional range in winter and summer.The NW wind events induce swells which spread toward the SSE-ESE direction from the North Atlantic Ocean,big wind source generates sustained and stable S-SW swells from the South Atlantic Ocean,and corresponding swell-influenced areas are discussed.The strongest swell event in the Gulf of Guinea during the simulation was used as a case study to trace its source.A strong clockwise wind vortex within the Roaring Forties induced these large swells in the Gulf of Guinea approximately 5.5 days later,and swell propagation formed a regular isoline of peak period distribution from the South Atlantic Ocean to the Gulf of Guinea in the SSW-SW direction. 展开更多
关键词 swells simulating waves nearshore double nesting numerical model Gulf of Guinea Atlantic Ocean 2D wave spectra
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部