期刊文献+
共找到434,343篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical simulation of circulating fluidization roasting desulfurization of high-sulfur bauxite based on computational particle fluid dynamics method
1
作者 Langfeng Fan Chengming Xie +5 位作者 Qijin Wei Hongliang Zhao Rongbin Li Yongmin Zhang Fengqin Liu Hong Yong Sohn 《Chinese Journal of Chemical Engineering》 2025年第6期138-152,共15页
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s... As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated. 展开更多
关键词 FLUIDIZATION Circulating fluidized bed numerical simulation CPFD method Roasting desulfurization BAUXITE
在线阅读 下载PDF
Numerical investigation of turbulent mass transfer processes in turbulent fluidized bed by computational mass transfer 被引量:1
2
作者 Hailun Ren Liang Zeng +3 位作者 Wenbin Li Shuyong Chen Zhongli Tang Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第12期64-74,共11页
Turbulent fluidized bed possesses a distinct advantage over bubbling fluidized bed in high solids contact efficiency and thus exerts great potential in applications to many industrial processes.Simulation for fluidiza... Turbulent fluidized bed possesses a distinct advantage over bubbling fluidized bed in high solids contact efficiency and thus exerts great potential in applications to many industrial processes.Simulation for fluidization of fluid catalytic cracking(FCC)particles and the catalytic reaction of ozone decomposition in turbulent fluidized bed is conducted using the EulerianeEulerian approach,where the recently developed two-equation turbulent(TET)model is introduced to describe the turbulent mass diffusion.The energy minimization multi-scale(EMMS)drag model and the kinetic theory of granular flow(KTGF)are adopted to describe gaseparticles interaction and particleeparticle interaction respectively.The TET model features the rigorous closure for the turbulent mass transfer equations and thus enables more reliable simulation.With this model,distributions of ozone concentration and gaseparticles two-phase velocity as well as volume fraction are obtained and compared against experimental data.The average absolute relative deviation for the simulated ozone concentration is 9.67%which confirms the validity of the proposed model.Moreover,it is found that the transition velocity from bubbling fluidization to turbulent fluidization for FCC particles is about 0.5 m$se1 which is consistent with experimental observation. 展开更多
关键词 Turbulent fluidized bed Simulation computational mass transfer TURBULENCE computational fluid dynamics
在线阅读 下载PDF
Numerical Analysis of Bacterial Meningitis Stochastic Delayed Epidemic Model through Computational Methods
3
作者 Umar Shafique Mohamed Mahyoub Al-Shamiri +3 位作者 Ali Raza Emad Fadhal Muhammad Rafiq Nauman Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期311-329,共19页
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng... Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results. 展开更多
关键词 Bacterial Meningitis disease stochastic delayed model stability analysis extinction and persistence computational methods
在线阅读 下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
4
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
在线阅读 下载PDF
Numerical simulation of seismic stress evolution in the Lajishan Fault zone on the northeastern margin of the Qinghai-Xizang Plateau
5
作者 Haitao Qin Guangliang Yang +3 位作者 Chang Liu Jianquan Chen Yaolin Shi Hengzhou Meng 《Geodesy and Geodynamics》 2025年第3期321-330,共10页
To analyze the triggering relationship of historical earthquakes to the 2023 Jishishan earthquake and estimate the seismic risk in the adjacent region after the earthquake,we calculate the evolution process of seismic... To analyze the triggering relationship of historical earthquakes to the 2023 Jishishan earthquake and estimate the seismic risk in the adjacent region after the earthquake,we calculate the evolution process of seismic stress generated by 11 earthquakes with MS≥6.0 and 1 earthquake with MS5.7 near the source in the past 100 years.The results show that before the 2023 Jishishan earthquake,the entire Lajishan Northern Edge Fault zone was under the stress shadow generated by the 12 earthquakes.The stress reduction at the 2023 Jishishan earthquake epicenter was approximately 15.1 kPa,and the contribution of this stress shadow mainly comes from the 1920 MS8.5 Haiyuan earthquake.The coseismic stress drop at the epicenter was around-292.1 kPa,and the maximum stress drop for the 2023 Jishishan earthquake was around-346.2 kPa.The Jishishan earthquake increased the stress of the two seismic gaps in the Lajishan Northern Edge Fault by 14.7 kPa and 59.7 k Pa respectively,the stress on the Lajishan Southern Edge Fault zone increased by 10.9 kPa,and the stress on the east section of Xunhua Nanshan Fault increased by 11.1 kPa.These stress increments potentially elevate the seismic hazard along these fault zones.In the future earthquake prevention and disaster reduction,attention should be paid to the seismic risk of these fault zones. 展开更多
关键词 2023 Jishishan earthquake Seismic stress changes Seismic risk numerical computation
原文传递
Flexural Performance of UHPC-Reinforced Concrete T-Beams:Experimental and Numerical Investigations 被引量:1
6
作者 Guangqing Xiao Xilong Chen +2 位作者 Lihai Xu Feilong Kuang Shaohua He 《Structural Durability & Health Monitoring》 2025年第5期1167-1181,共15页
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated... This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders. 展开更多
关键词 UHPC thin layer T-BEAM REINFORCEMENT bending performance numerical simulation
在线阅读 下载PDF
Data-Driven Healthcare:The Role of Computational Methods in Medical Innovation
7
作者 Hariharasakthisudhan Ponnarengan Sivakumar Rajendran +2 位作者 Vikas Khalkar Gunapriya Devarajan Logesh Kamaraj 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期1-48,共48页
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r... The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable. 展开更多
关键词 computational models biomedical engineering BIOINFORMATICS machine learning wearable technology
在线阅读 下载PDF
Numerical Study of Cavitating Flows around a Hydrofoil with Deep Analysis of Vorticity Effects 被引量:1
8
作者 Shande Li Wen’an Zhong +1 位作者 Shaoxing Yu Hao Wang 《Fluid Dynamics & Materials Processing》 2025年第1期179-204,共26页
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ... This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field. 展开更多
关键词 Cavitating flow HYDROFOIL flow velocity VORTICITY computational Fluid Dynamics(CFD)
在线阅读 下载PDF
Seismic responses and shattering cumulative effects of bedding parallel stepped rock slope:Model test and numerical simulation 被引量:1
9
作者 Chunlei Xin Fei Yang +2 位作者 Wenkai Feng Zhao Wang Wenhui Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2009-2030,共22页
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu... Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes. 展开更多
关键词 Rock slope stability Shaking table test numerical simulation Permanent displacement Acceleration amplification factor
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
10
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Numerical Simulation of Storm Surges Based on the Local Time-Stepping Algorithm
11
作者 LIU Guilin JI Tao +2 位作者 SUN Yinghao YU Pubing SONG Shichun 《Journal of Ocean University of China》 2025年第3期583-591,共9页
The local time-stepping(LTS)algorithm is an adaptive method that adjusts the time step by selecting suitable intervals for different regions based on the spatial scale of each cell and water depth and flow velocity be... The local time-stepping(LTS)algorithm is an adaptive method that adjusts the time step by selecting suitable intervals for different regions based on the spatial scale of each cell and water depth and flow velocity between cells.The method can be optimized by calculating the maximum power of two of the global time step increments in the domain,allowing the optimal time step to be approached throughout the grid.To verify the acceleration and accuracy of LTS in storm surge simulations,we developed a model to simulate astronomical storm surges along the southern coast of China.This model employs the shallow water equations as governing equations,numerical discretization using the finite volume method,and fluxes calculated by the Roe solver.By comparing the simulation results of the traditional global time-stepping algorithm with those of the LTS algorithm,we find that the latter fit the measured data better.Taking the calculation results of Typhoon Sally in 1996 as an example,we show that compared with the traditional global time-stepping algorithm,the LTS algorithm reduces computation time by 2.05 h and increases computation efficiency by 2.64 times while maintaining good accuracy. 展开更多
关键词 local time-stepping storm surge numerical simulation computational efficiency
在线阅读 下载PDF
Numerical Simulation and Preparation of Micro-gear via Casting Forming Using Zr-based Amorphous Alloy
12
作者 Li Chunling Li Shaobing +2 位作者 Li Xiaocheng Li Chunyan Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第6期1435-1444,共10页
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit... A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness. 展开更多
关键词 Zr-based amorphous alloy MICRO-GEAR numerical simulation CASTING
原文传递
Digital Humanities,Computational Criticism and the Stanford Literary Lab:An Interviewwith Mark Algee-Hewittr
13
作者 Hui Haifeng Mark Algee-Hewitt 《外国文学研究》 北大核心 2025年第4期1-10,共10页
The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digit... The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research. 展开更多
关键词 digital humanities computational criticism literary research Literary Lab
原文传递
Hydrodynamic performance of KCS ship in steady turning:experimental and numerical studies
14
作者 Bowen Zhao Hao Gu +3 位作者 Xinyan Yu Hongyang Zhao Zhiguo Yang Bin Huang 《Acta Mechanica Sinica》 2025年第8期65-88,共24页
The turning performance of a ship is an important aspect of its maneuverability,and accurately predicting the hydrodynamic forces during ship turning motion is of great significance for the safe maneuvering design of ... The turning performance of a ship is an important aspect of its maneuverability,and accurately predicting the hydrodynamic forces during ship turning motion is of great significance for the safe maneuvering design of ships.This paper investigated the hydrodynamic performance of a KRISO container ship in steady turning using experimental and numerical approaches.The rotating arm tests were carried out in rotating arm basin of Zhejiang University,while the numerical simulations were conducted in commercial computational fluid dynamics software.Hydrodynamic forces and moments,hull surface wave height,wave patterns,and vorticity are studied under different velocities,radii,and drift angles.The results show that the increase in velocity has a significant impact on the forces and moments of the hull.The changes in longitudinal and transverse forces reflect the complex fluid dynamic interactions between the hull and water.Under conditions of small radius and large drift angle,the hull experiences greater forces and moments,indicating that stability and maneuverability will be more challenged during sudden turns.This study can provide experimental data and numerical simulation references for the research of ship turning maneuvers. 展开更多
关键词 Hydrodynamic performance KRISO container ship Steady turning Rotating arm test numerical simulation computational fluid dynamics
原文传递
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
15
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode computational fluid dynamics
原文传递
Computational Analysis on the Hydrodynamics of a Semisubmersible Naval Ship
16
作者 Utku Cem Karabulut Baris Barlas 《哈尔滨工程大学学报(英文版)》 2025年第2期331-344,共14页
Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuver... Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions. 展开更多
关键词 Semisubmersible naval ship Ship resistance Planing hull computational fluid dynamics URANS equations Free surface effect High-resolution-interface-capturing scheme numerical ventilation problem
在线阅读 下载PDF
Numerical Simulation and Analysis of Heat Treatment Processes on AISI 1025 Steel Produced by Laser Engineered Net Shaping
17
作者 Elphas Tum Rehema Ndeda +3 位作者 James Mutua Raghupatruni Prasad Eyitao Olakanmi Sisa Pityana 《Modeling and Numerical Simulation of Material Science》 2025年第1期1-15,共15页
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ... Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%. 展开更多
关键词 Heat Treatment Residual Stresses HARDNESS Microstructure numerical Simulation
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
18
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
19
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
DRL-Based Cross-Regional Computation Offloading Algorithm
20
作者 Lincong Zhang Yuqing Liu +2 位作者 Kefeng Wei Weinan Zhao Bo Qian 《Computers, Materials & Continua》 2026年第1期901-918,共18页
In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network e... In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads. 展开更多
关键词 Edge computing computational task offloading deep reinforcement learning D3QN device-to-device communication system latency optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部