Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at vary...In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at varying loading conditions(J=0.3 and J=0.6).It is revealed that the quadrupole term contribution in the P-FWH method significantly affects the monopole term in the low-frequency region,while it mainly affects the dipole term in the high-frequency region.Specifically,the overall sound pressure levels(SPL)of the RDT using the P-FWH method are 2.27 dB,10.03 dB,and 16.73 dB at the receiving points from R1 to R3 under the heavy-loaded condition,while they increase by 0.67 dB at R1,and decrease by 14.93 dB at R2,and 22.20 dB at R3,for the light-loaded condition.The study also utilizes the pressure-time derivatives to visualize the numerical noise and to pinpoint the dynamics of the vortex cores,and the optimization of the grid design can significantly reduce the numerical noise.The computational accuracy of the P-FWH method can meet the noise requirements for the preliminary design of rim driven thrusters.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized...Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal.展开更多
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated...This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.展开更多
Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fract...Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fracture behavior,neglecting the combined influence of grain size and temperature on fracture behavior.This study employs specimens based on the particle flow code-grain based model to scrutinize the influence of temperature and grain size discrepancies on the fracture characteristics of sandstone.In pursuit of this goal,we manufactured ninety-six semi-circular bend specimens with grain sizes spanning from 0.5 mm to 1.5 mm,predicated on the mineral composition of sandstone.Recognizing the significance of intra-granular and inter-granular fractures,the grains were considered deformable and susceptible to breakage.The numerical model was calibrated using the results of uniaxial compressive strength(UCS)and Brazilian tests.We implemented thermo-mechanical coupled analysis to simulate mode Ⅰ,mode Ⅱ,and mixed mode(Ⅰ-Ⅱ)fracture toughness tests and subsequently studied alterations in the fracture behavior of sandstone at temperatures from 25℃ to 700℃.Our findings revealed increased fracture toughness as the temperature escalated from 25℃ to 200℃.However,beyond the threshold of 200℃,we noted a decline in fracture toughness.More specifically,the drop in mode Ⅰ fracture toughness was more pronounced in specimens with finer grains than those with coarser grains.Contrarily,the trend was reversed for mode Ⅱ fracture toughness.In contrast,the reduction of mixed mode(Ⅰ-Ⅱ)fracture toughness seemed almost linear across all grain sizes.Furthermore,we identified a correlation between temperature and grain size and their collective impact on crack propagation patterns.Comparing our results with established theoretical benchmarks,we confirmed that both temperature and grain size variations influence the fracture envelopes of sandstone.展开更多
The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods t...The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)un...To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)under the guidance of the explosive welding lower limit principle with the flyer plate thicknesses of 1,2,and 4 mm and gaps of 3,6,and 8 mm.The weldability window for titanium/steel explosive welding was calculated,and a quantitative relationship between dynamic and static process parameters was developed.Aβ-V_(p) high-speed inclined collision model was proposed,and two-dimensional numerical simulations for the explosive welding tests were performed using the smoothed particle hydrodynamics(SPH)algorithm,revealing the growth evolution mechanisms of the typical waveform morphology characteristics.Through microstructural characterization techniques,such as optical microscope,scanning electron microscope,energy dispersive spectrometer,and electron backscattered diffractometer,and mechanical property tests in terms of shear strength,bending performance,and impact toughness,the microstructure and mechanical properties of the interfaces of explosively welded TA1/Q235 composite plates were investigated.Results show that the quality of interface bonding is excellent,presenting typical waveform morphology with an average interface shear strength above 330 MPa and an average impact toughness exceeding 81 J.All samples can be bent to 180°without significant delamination or cracking defects.展开更多
Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(F...Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(FRP)composites have emerged as promising materials for structural reinforcement.This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression.Using analytical and numerical modeling methods,the critical buckling loads for different reinforcement options were evaluated.Two-sided glass fiber reinforced plastic(GFRP)or carbon fiber reinforced plastic(CFRP)coatings,as well as combined coatings with layers of different composites,were considered.GFRP+CFRPIn the calculations,the coatings were treated as homogeneous orthotropic materials with equivalent averaged elastic characteristics.The numerical analysis revealed that CFRP reinforcement achieved the highest increase in buckling load,with improvements ranging from 9.84%to 47.29%,depending on the composite thickness and steel shell thickness.GFRP reinforcement,while beneficial,demonstrated a lower effectiveness,with buckling load increases between 5.89%and 19.30%.The hybrid reinforcement provided an optimal balance,improving buckling resistance by GFRP+CFRP6.94%to 43.95%.Statistical analysis further identified composite type and thickness as the most significant factors affecting buckling performance.The findings suggest that CFRP is the preferred reinforcement material,especially when applied to thin-walled cylindrical shells,while hybrid reinforcements can be effectively utilized for structures requiring a balance between stiffness and ductility.These insights provide a foundation for optimizing FRP reinforcement strategies to enhance the structural integrity of steel shells in engineering applications.展开更多
Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling ...Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling method,two typical types of outbursts,i.e.the gas pocket outburst and the dynamic fracturing outburst,have been successfully simulated using field data from a coalfield in central China.The geological structure commonly observed in the coalfield,known as the‘bedding shear zone’,contributes to the gas pocket outbursts in the region.The model for this type of outburst simulates mininginduced stress and gas pressure distributions during the outburst initiation stage and the subsequent development stage.Both coal ejection and gas release are observed in the model,and the simulation results are consistent with mine site observations,i.e.the amount of ejected coal,outburst cavity profile,and gas release rate change prior to an outburst.The second type of outburst is attributed to gas accumulation and elevated gas pressure due to the gassy floor seam and the heterogeneity in the floor strata,which is explained by the dynamic fracturing theory.While the dynamic coal ejection phenomenon is not captured in the simulation,the abrupt release of retained gas from a floor coal seam is successfully replicated.Both outburst models reveal that abnormal gas emission trends can be used as indicators of an upcoming outburst.The results of this study are expected to provide new insights into the outburst initiation mechanisms and outburst prevention measures.展开更多
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ...Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.展开更多
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
A three-dimensional coupled sea ice-ice shelf-ocean numerical model is developed for the Prydz Bay,Antarctica,using the Regional Ocean Modeling System with a grid resolution of approximately 2 km.The influence of the ...A three-dimensional coupled sea ice-ice shelf-ocean numerical model is developed for the Prydz Bay,Antarctica,using the Regional Ocean Modeling System with a grid resolution of approximately 2 km.The influence of the grounding giant iceberg D15 on the distribution of sea ice and polynyas in the Prydz Bay is analyzed through two numerical experiments.Iceberg D15,grounded off the western edge of the West Ice Shelf(WIS),obstructs the southwestward transport of sea ice along the east coast of Prydz Bay,causing sea ice to accumulate to the east of the iceberg and form multi-year fast ice.Grounding of Iceberg D15 also decreases sea ice coverage off its south edge and creates ice-free openings in spring near Davis Station and Zhongshan Station,facilitating the accessibility of vessels to the research stations.These simulated sea ice patterns closely match current satellite observations.When Iceberg D15 is removed,the previously blocked sea ice north of the iceberg,which moved westward,shifts southwesterly along the coastline,leading to a reduction in sea ice thickness during winter and spring,as well as lower sea ice concentrations in spring across large areas north and west of the iceberg.In contrast,the sea ice thickness increases considerably southwest of the WIS,extending to the front of the Amery Ice Shelf during seasons covered by sea ice.The increase in sea ice concentration can also extend to as far as 75°E in spring.Without Iceberg D15,which previously contributed to the ice barrier of Barrier Polynya(BP),the shape of BP changes,the area of BP and Davis Polynya(DP)decreases,and the polynya off the northwest edge of the WIS near 83°E expands.These polynya patterns are much similar to the satellite remote sensing observations before Iceberg D15 was grounded.From April to October,the total area of BP and DP decreases by 2.83×10^(4)km^(2)(60%)and 2.20×10^(3)km^(2)(20%),respectively,while the total sea ice production decreases by 4.11×10^(10)m^(3)(66%)and 1.52×10^(10)m^(3)(52%)compared to the experiment with iceberg.These results indicate the substantial effects of grounding giant icebergs on the spatio-temporal distribution of sea ice,the area of polynyas,and sea ice production.High-resolution Antarctic coastal numerical models,typically with grid scales of kilometers,are sufficient to represent large icebergs,and adding the grounding giant icebergs is crucial for producing realistic simulations of sea ice and polynyas.展开更多
We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolutio...We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions.展开更多
Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or a...Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or alloys.They offer several benefits,such as high specific strength,low corrosion,delayed cavitation,improved dynamic stability,reduced noise levels,and overall energy efficiency.In addition,composite materials undergo passive deformation,termed as“bend-twist effect”,under hydrodynamic loads due to their inherent flexibility and anisotropy.Although performance analysis methods were developed in the past for marine propellers,there is a significant lack of literature on composite propellers.This article discusses the recent advancements in experimental and numerical modelling,state-of-the-art computational technologies,and mutated mathematical models that aid in designing,analysing,and optimising composite marine propellers.In the initial sections,performance evaluation methods and challenges with the existing propeller materials are discussed.Thereafter,the benefits of composite propellers are critically reviewed.Numerical and experimental FSI coupling methods,cavitation performance,the effect of stacking sequence,and acoustic measurements are some critical areas discussed in detail.A two-way FSI-coupled simulation was conducted in a non-cavitating regime for four advanced ratios and compared with the literature results.Finally,the scope for future improvements and conclusions are mentioned.展开更多
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金The National Natural Science Foundation of China(Grant No.52201376)the Natural Science Foundation of Hubei Province,China(Grant No.2023AFB683).
文摘In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at varying loading conditions(J=0.3 and J=0.6).It is revealed that the quadrupole term contribution in the P-FWH method significantly affects the monopole term in the low-frequency region,while it mainly affects the dipole term in the high-frequency region.Specifically,the overall sound pressure levels(SPL)of the RDT using the P-FWH method are 2.27 dB,10.03 dB,and 16.73 dB at the receiving points from R1 to R3 under the heavy-loaded condition,while they increase by 0.67 dB at R1,and decrease by 14.93 dB at R2,and 22.20 dB at R3,for the light-loaded condition.The study also utilizes the pressure-time derivatives to visualize the numerical noise and to pinpoint the dynamics of the vortex cores,and the optimization of the grid design can significantly reduce the numerical noise.The computational accuracy of the P-FWH method can meet the noise requirements for the preliminary design of rim driven thrusters.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金financially supported by the National Natural Science Foundation of China(No.51904026)the Fundamental Research Funds for the Central Universities(No.06500108)。
文摘Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal.
基金The National Natural Science Foundation of China(Grant#52278161)the Science and Technology Project of Guangzhou(Grant#2024A04J9888)the Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.
文摘Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fracture behavior,neglecting the combined influence of grain size and temperature on fracture behavior.This study employs specimens based on the particle flow code-grain based model to scrutinize the influence of temperature and grain size discrepancies on the fracture characteristics of sandstone.In pursuit of this goal,we manufactured ninety-six semi-circular bend specimens with grain sizes spanning from 0.5 mm to 1.5 mm,predicated on the mineral composition of sandstone.Recognizing the significance of intra-granular and inter-granular fractures,the grains were considered deformable and susceptible to breakage.The numerical model was calibrated using the results of uniaxial compressive strength(UCS)and Brazilian tests.We implemented thermo-mechanical coupled analysis to simulate mode Ⅰ,mode Ⅱ,and mixed mode(Ⅰ-Ⅱ)fracture toughness tests and subsequently studied alterations in the fracture behavior of sandstone at temperatures from 25℃ to 700℃.Our findings revealed increased fracture toughness as the temperature escalated from 25℃ to 200℃.However,beyond the threshold of 200℃,we noted a decline in fracture toughness.More specifically,the drop in mode Ⅰ fracture toughness was more pronounced in specimens with finer grains than those with coarser grains.Contrarily,the trend was reversed for mode Ⅱ fracture toughness.In contrast,the reduction of mixed mode(Ⅰ-Ⅱ)fracture toughness seemed almost linear across all grain sizes.Furthermore,we identified a correlation between temperature and grain size and their collective impact on crack propagation patterns.Comparing our results with established theoretical benchmarks,we confirmed that both temperature and grain size variations influence the fracture envelopes of sandstone.
基金funded by the Science and Technology Project of Tianjin(No.24YDTPJC00680)the National Natural Science Foundation of China(No.52406191).
文摘The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.
基金Jiangsu Provincial Natural Science Foundation of China(BK20211232)2023 Major Science and Technology Projects of Nanjing City(202309011)。
文摘To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)under the guidance of the explosive welding lower limit principle with the flyer plate thicknesses of 1,2,and 4 mm and gaps of 3,6,and 8 mm.The weldability window for titanium/steel explosive welding was calculated,and a quantitative relationship between dynamic and static process parameters was developed.Aβ-V_(p) high-speed inclined collision model was proposed,and two-dimensional numerical simulations for the explosive welding tests were performed using the smoothed particle hydrodynamics(SPH)algorithm,revealing the growth evolution mechanisms of the typical waveform morphology characteristics.Through microstructural characterization techniques,such as optical microscope,scanning electron microscope,energy dispersive spectrometer,and electron backscattered diffractometer,and mechanical property tests in terms of shear strength,bending performance,and impact toughness,the microstructure and mechanical properties of the interfaces of explosively welded TA1/Q235 composite plates were investigated.Results show that the quality of interface bonding is excellent,presenting typical waveform morphology with an average interface shear strength above 330 MPa and an average impact toughness exceeding 81 J.All samples can be bent to 180°without significant delamination or cracking defects.
文摘Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio,but they are vulnerable to buckling under axial loads.To address this limitation,fiber-reinforced polymer(FRP)composites have emerged as promising materials for structural reinforcement.This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression.Using analytical and numerical modeling methods,the critical buckling loads for different reinforcement options were evaluated.Two-sided glass fiber reinforced plastic(GFRP)or carbon fiber reinforced plastic(CFRP)coatings,as well as combined coatings with layers of different composites,were considered.GFRP+CFRPIn the calculations,the coatings were treated as homogeneous orthotropic materials with equivalent averaged elastic characteristics.The numerical analysis revealed that CFRP reinforcement achieved the highest increase in buckling load,with improvements ranging from 9.84%to 47.29%,depending on the composite thickness and steel shell thickness.GFRP reinforcement,while beneficial,demonstrated a lower effectiveness,with buckling load increases between 5.89%and 19.30%.The hybrid reinforcement provided an optimal balance,improving buckling resistance by GFRP+CFRP6.94%to 43.95%.Statistical analysis further identified composite type and thickness as the most significant factors affecting buckling performance.The findings suggest that CFRP is the preferred reinforcement material,especially when applied to thin-walled cylindrical shells,while hybrid reinforcements can be effectively utilized for structures requiring a balance between stiffness and ductility.These insights provide a foundation for optimizing FRP reinforcement strategies to enhance the structural integrity of steel shells in engineering applications.
基金the National Natural Science Foundation of China(52304105)National Natural Science Foundation of China-National major scientific research instrument development project(52227901)Jiangsu Province International Collaboration Program-Key national industrial technology research and development cooperation projects(BZ2023050).
文摘Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling method,two typical types of outbursts,i.e.the gas pocket outburst and the dynamic fracturing outburst,have been successfully simulated using field data from a coalfield in central China.The geological structure commonly observed in the coalfield,known as the‘bedding shear zone’,contributes to the gas pocket outbursts in the region.The model for this type of outburst simulates mininginduced stress and gas pressure distributions during the outburst initiation stage and the subsequent development stage.Both coal ejection and gas release are observed in the model,and the simulation results are consistent with mine site observations,i.e.the amount of ejected coal,outburst cavity profile,and gas release rate change prior to an outburst.The second type of outburst is attributed to gas accumulation and elevated gas pressure due to the gassy floor seam and the heterogeneity in the floor strata,which is explained by the dynamic fracturing theory.While the dynamic coal ejection phenomenon is not captured in the simulation,the abrupt release of retained gas from a floor coal seam is successfully replicated.Both outburst models reveal that abnormal gas emission trends can be used as indicators of an upcoming outburst.The results of this study are expected to provide new insights into the outburst initiation mechanisms and outburst prevention measures.
文摘Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金The National Natural Science Foundation of China under contract Nos 41976217 and 42306249the National Key Research and Development Program of China under contract No.2018YFA0605701.
文摘A three-dimensional coupled sea ice-ice shelf-ocean numerical model is developed for the Prydz Bay,Antarctica,using the Regional Ocean Modeling System with a grid resolution of approximately 2 km.The influence of the grounding giant iceberg D15 on the distribution of sea ice and polynyas in the Prydz Bay is analyzed through two numerical experiments.Iceberg D15,grounded off the western edge of the West Ice Shelf(WIS),obstructs the southwestward transport of sea ice along the east coast of Prydz Bay,causing sea ice to accumulate to the east of the iceberg and form multi-year fast ice.Grounding of Iceberg D15 also decreases sea ice coverage off its south edge and creates ice-free openings in spring near Davis Station and Zhongshan Station,facilitating the accessibility of vessels to the research stations.These simulated sea ice patterns closely match current satellite observations.When Iceberg D15 is removed,the previously blocked sea ice north of the iceberg,which moved westward,shifts southwesterly along the coastline,leading to a reduction in sea ice thickness during winter and spring,as well as lower sea ice concentrations in spring across large areas north and west of the iceberg.In contrast,the sea ice thickness increases considerably southwest of the WIS,extending to the front of the Amery Ice Shelf during seasons covered by sea ice.The increase in sea ice concentration can also extend to as far as 75°E in spring.Without Iceberg D15,which previously contributed to the ice barrier of Barrier Polynya(BP),the shape of BP changes,the area of BP and Davis Polynya(DP)decreases,and the polynya off the northwest edge of the WIS near 83°E expands.These polynya patterns are much similar to the satellite remote sensing observations before Iceberg D15 was grounded.From April to October,the total area of BP and DP decreases by 2.83×10^(4)km^(2)(60%)and 2.20×10^(3)km^(2)(20%),respectively,while the total sea ice production decreases by 4.11×10^(10)m^(3)(66%)and 1.52×10^(10)m^(3)(52%)compared to the experiment with iceberg.These results indicate the substantial effects of grounding giant icebergs on the spatio-temporal distribution of sea ice,the area of polynyas,and sea ice production.High-resolution Antarctic coastal numerical models,typically with grid scales of kilometers,are sufficient to represent large icebergs,and adding the grounding giant icebergs is crucial for producing realistic simulations of sea ice and polynyas.
基金the National Natural Science Foundation of China(No.52074182)Joint Funds of the National Natural Science Foundation of China(No.U23A20612).
文摘We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions.
基金Supporting by the project‘FILE NO.CRG/2022/001718’.
文摘Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or alloys.They offer several benefits,such as high specific strength,low corrosion,delayed cavitation,improved dynamic stability,reduced noise levels,and overall energy efficiency.In addition,composite materials undergo passive deformation,termed as“bend-twist effect”,under hydrodynamic loads due to their inherent flexibility and anisotropy.Although performance analysis methods were developed in the past for marine propellers,there is a significant lack of literature on composite propellers.This article discusses the recent advancements in experimental and numerical modelling,state-of-the-art computational technologies,and mutated mathematical models that aid in designing,analysing,and optimising composite marine propellers.In the initial sections,performance evaluation methods and challenges with the existing propeller materials are discussed.Thereafter,the benefits of composite propellers are critically reviewed.Numerical and experimental FSI coupling methods,cavitation performance,the effect of stacking sequence,and acoustic measurements are some critical areas discussed in detail.A two-way FSI-coupled simulation was conducted in a non-cavitating regime for four advanced ratios and compared with the literature results.Finally,the scope for future improvements and conclusions are mentioned.