In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgr...In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgroups H of P such that |H| = pdand explore p-supersolvability of G by the conditions of weakly M-supplemented properties of H and psupersolvability of the normalizer NG(H), where 1 ≤ pd<|P |. Also, we study the p-nilpotency of G under the assumptions that NG(P) is p-nilpotent and the weakly M-supplemented condition on a subgroup K such that K_(p)■K and P′≤ K_(p) ≤ Φ(P), Kp is a Sylow p-subgroup K. To some extent, our main results can be regarded as generalizations of the Frobenius theorem.展开更多
Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub...Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub>∈Syl<sub>r</sub> G and R<sub>2</sub>∈Syl<sub>r</sub>(L<sub>n</sub>(q)), then G≌L<sub>n</sub>(q).展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t...Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
The prevalence of Class Ⅲ malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can serio...The prevalence of Class Ⅲ malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore,early orthodontic treatment for Class Ⅲ malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class Ⅲ malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class Ⅲ malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class Ⅲ malocclusion through early orthodontic treatment.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
This article studies a class of nonlinear Kirchhoff equations with exponential critical growth,trapping potential,and perturbation.Under appropriate assumptions about f and h,the article obtained the existence of norm...This article studies a class of nonlinear Kirchhoff equations with exponential critical growth,trapping potential,and perturbation.Under appropriate assumptions about f and h,the article obtained the existence of normalized positive solutions for this equation via the Trudinger-Moser inequality and variational methods.Moreover,these solutions are also ground state solutions.Additionally,the article also characterized the asymptotic behavior of solutions.The results of this article expand the research of relevant literature.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known ...Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known that for each maximal torus T of G there exists an element w ∈ W such that N(G, T )/T ■ CW(w). When T does not have a complement isomorphic to CW(w), we show that w has a lift in N(G, T) of the same order.展开更多
In this paper we mainly investigate the Coleman automorphisms and class-preserving automorphisms of finite AZ-groups and finite groups related to AZ-groups.For example,we first prove that Outc(G)of an AZ-group G must ...In this paper we mainly investigate the Coleman automorphisms and class-preserving automorphisms of finite AZ-groups and finite groups related to AZ-groups.For example,we first prove that Outc(G)of an AZ-group G must be a 2′-group and therefore the normalizer property holds for G.Then we find some classes of finite groups such that the intersection of their outer class-preserving automorphism groups and outer Coleman automorphism groups is 2′-groups,and therefore,the normalizer property holds for these kinds of finite groups.Finally,we show that the normalizer property holds for the wreath products of AZ-groups by rational permutation groups under some conditions.展开更多
Let G=Hol(H)be the holomorph of a finite group H.If there is a prime q dividing|H|such that every q-central automorphism of H is inner and Z(H)=1,then every Coleman automorphism of G is inner.In particular,the normali...Let G=Hol(H)be the holomorph of a finite group H.If there is a prime q dividing|H|such that every q-central automorphism of H is inner and Z(H)=1,then every Coleman automorphism of G is inner.In particular,the normalizer property holds for G.展开更多
On-device Artificial Intelligence(AI)accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field,where frequent retraining is crucial due to f...On-device Artificial Intelligence(AI)accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field,where frequent retraining is crucial due to frequent production changes.Batch normalization(BN)is fundamental to training convolutional neural networks(CNNs),but its implementation in compact accelerator chips remains challenging due to computational complexity,particularly in calculating statistical parameters and gradients across mini-batches.Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources,limiting their practical deployment.We present a hardware-optimized BN accelerator that maintains training accuracy while significantly reducing computational overhead through three novel techniques:(1)resourcesharing for efficient resource utilization across forward and backward passes,(2)interleaved buffering for reduced dynamic random-access memory(DRAM)access latencies,and(3)zero-skipping for minimal gradient computation.Implemented on a VCU118 Field Programmable Gate Array(FPGA)on 100 MHz and validated using You Only Look Once version 2-tiny(YOLOv2-tiny)on the PASCALVisualObjectClasses(VOC)dataset,our normalization accelerator achieves a 72%reduction in processing time and 83%lower power consumption compared to a 2.4 GHz Intel Central Processing Unit(CPU)software normalization implementation,while maintaining accuracy(0.51%mean Average Precision(mAP)drop at floating-point 32 bits(FP32),1.35%at brain floating-point 16 bits(bfloat16)).When integrated into a neural processing unit(NPU),the design demonstrates 63%and 97%performance improvements over AMD CPU and Reduced Instruction Set Computing-V(RISC-V)implementations,respectively.These results confirm that our proposed BN hardware design enables efficient,high-accuracy,and power-saving on-device training for modern CNNs.Our results demonstrate that efficient hardware implementation of standard batch normalization is achievable without sacrificing accuracy,enabling practical on-device CNN training with significantly reduced computational and power requirements.展开更多
The present study focuses on simulating supercavitating projectile tail-slaps with an analytical method.A model of 3σ-normal distribution tail-slaps for a supercavitating projectile is established.Meanwhile,theσ-κe...The present study focuses on simulating supercavitating projectile tail-slaps with an analytical method.A model of 3σ-normal distribution tail-slaps for a supercavitating projectile is established.Meanwhile,theσ-κequation is derived,which is included in this model.Next,the supercavitating projectile tail-slaps are simulated by combining the proposed model and the Logvinovich supercavity section expansion equation.The results show that the number of tail-slaps depends on where the initial several tail-slaps are under the same initial condition.If the distances between the initial several tail-slap positions are large,the number of tail-slaps will considerably decrease,and vice versa.Furthermore,a series of simulations is employed to analyze the influence of the initial angular velocity and the centroid.Analysis of variance is used to evaluate simulation results.The evaluation results suggest that the projectile’s initial angular velocity and centroid have a major impact on the tail-slap number.The larger the value of initial angular velocity,the higher the probability of an increase in tail-slap number.Additionally,the closer the centroid is to the projectile head,the less likely a tail-slap number increase.This study offers important insights into supercavitating projectile tail-slap research.展开更多
Renormalization group analysis has been proposed to eliminate secular terms in perturbation solutions of differential equations and thus expand the domain of their validity.Here we extend the method to treat periodic ...Renormalization group analysis has been proposed to eliminate secular terms in perturbation solutions of differential equations and thus expand the domain of their validity.Here we extend the method to treat periodic orbits or limit cycles.Interesting normal forms could be derived through a generalization of the concept'resonance',which offers nontrivial analytic approximations.Compared with traditional techniques such as multi-scale methods,the current scheme proceeds in a very straightforward and simple way,delivering not only the period and the amplitude but also the transient path to limit cycles.The method is demonstrated with several examples including the Duffing oscillator,van der Pol equation and Lorenz equation.The obtained solutions match well with numerical results and with those derived by traditional analytic methods.展开更多
Rockfall represents a significant geological hazard in mountainous regions,characterized by a sudden and unpredictable feature.The process of dynamic fragmentation and energy conversion in a rockfall event remains com...Rockfall represents a significant geological hazard in mountainous regions,characterized by a sudden and unpredictable feature.The process of dynamic fragmentation and energy conversion in a rockfall event remains complex and not fully understood.This study aims to gain a further understanding of the energy transfer mechanism during rockfall impact and fragmentation by impact tests using a variety of rock-like sphere specimens.The experiments mainly focus on the quantitative correlation between fragmentation degree and influence factors,i.e.impact angle and velocity on steel and granite slabs.The analysis focuses on the energy distribution characteristics,energy dissipation mechanisms,and the energy conversion rate of the fragments during impact and fragmentation.The results show that there is a significant correlation between the energy conversion rate and the fragmentation degree.In normal impact tests,elasto-plastic deformation energy and fracture energy are found to be two primary categories of energy dissipation.The proportion of total kinetic energy after impact is inversely proportional to the initial energy.A comparative analysis between normal and inclined slab impact tests reveals that the impact angle significantly influences the energy conversion rate,which controls the fragmentation degree as well.In addition,the fragmentation degree is inversely proportional to the restitution coefficient.These findings contribute to a better understanding of the energy conversion mechanism during rockfall impact and fragmentation,providing valuable insight for the development of effective strategies to mitigate such rockfall hazards.展开更多
Deep neural networks remain susceptible to adversarial examples,where the goal of an adversarial attack is to introduce small perturbations to the original examples in order to confuse the model without being easily d...Deep neural networks remain susceptible to adversarial examples,where the goal of an adversarial attack is to introduce small perturbations to the original examples in order to confuse the model without being easily detected.Although many adversarial attack methods produce adversarial examples that have achieved great results in the whitebox setting,they exhibit low transferability in the black-box setting.In order to improve the transferability along the baseline of the gradient-based attack technique,we present a novel Stochastic Gradient Accumulation Momentum Iterative Attack(SAMI-FGSM)in this study.In particular,during each iteration,the gradient information is calculated using a normal sampling approach that randomly samples around the sample points,with the highest probability of capturing adversarial features.Meanwhile,the accumulated information of the sampled gradient from the previous iteration is further considered to modify the current updated gradient,and the original gradient attack direction is changed to ensure that the updated gradient direction is more stable.Comprehensive experiments conducted on the ImageNet dataset show that our method outperforms existing state-of-the-art gradient-based attack techniques,achieving an average improvement of 10.2%in transferability.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.12001436)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1843)+3 种基金Chunhui Plan Cooperative Scientific Research Project of Ministry of Education of the People’s Republic of Chinathe Fundamental Research Funds of China West Normal University(Grant Nos.17E09118B032)。
文摘In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgroups H of P such that |H| = pdand explore p-supersolvability of G by the conditions of weakly M-supplemented properties of H and psupersolvability of the normalizer NG(H), where 1 ≤ pd<|P |. Also, we study the p-nilpotency of G under the assumptions that NG(P) is p-nilpotent and the weakly M-supplemented condition on a subgroup K such that K_(p)■K and P′≤ K_(p) ≤ Φ(P), Kp is a Sylow p-subgroup K. To some extent, our main results can be regarded as generalizations of the Frobenius theorem.
文摘Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub>∈Syl<sub>r</sub> G and R<sub>2</sub>∈Syl<sub>r</sub>(L<sub>n</sub>(q)), then G≌L<sub>n</sub>(q).
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
文摘Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
文摘The prevalence of Class Ⅲ malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore,early orthodontic treatment for Class Ⅲ malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class Ⅲ malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class Ⅲ malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class Ⅲ malocclusion through early orthodontic treatment.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by National Natural Science Foundation of China(11671403,11671236)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘This article studies a class of nonlinear Kirchhoff equations with exponential critical growth,trapping potential,and perturbation.Under appropriate assumptions about f and h,the article obtained the existence of normalized positive solutions for this equation via the Trudinger-Moser inequality and variational methods.Moreover,these solutions are also ground state solutions.Additionally,the article also characterized the asymptotic behavior of solutions.The results of this article expand the research of relevant literature.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
基金Russian Science Foundation (project no. 14-21-00065).
文摘Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known that for each maximal torus T of G there exists an element w ∈ W such that N(G, T )/T ■ CW(w). When T does not have a complement isomorphic to CW(w), we show that w has a lift in N(G, T) of the same order.
基金The research of the work was partially supported by the National Natural Science Foundation of China(11771271).
文摘In this paper we mainly investigate the Coleman automorphisms and class-preserving automorphisms of finite AZ-groups and finite groups related to AZ-groups.For example,we first prove that Outc(G)of an AZ-group G must be a 2′-group and therefore the normalizer property holds for G.Then we find some classes of finite groups such that the intersection of their outer class-preserving automorphism groups and outer Coleman automorphism groups is 2′-groups,and therefore,the normalizer property holds for these kinds of finite groups.Finally,we show that the normalizer property holds for the wreath products of AZ-groups by rational permutation groups under some conditions.
基金Supported by the National Natural Science Foundation of China(Grant No.11871292)。
文摘Let G=Hol(H)be the holomorph of a finite group H.If there is a prime q dividing|H|such that every q-central automorphism of H is inner and Z(H)=1,then every Coleman automorphism of G is inner.In particular,the normalizer property holds for G.
基金supported by the National Research Foundation of Korea(NRF)grant for RLRC funded by the Korea government(MSIT)(No.2022R1A5A8026986,RLRC)supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-01304,Development of Self-Learnable Mobile Recursive Neural Network Processor Technology)+3 种基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Grand Information Technology Research Center support program(IITP-2024-2020-0-01462,Grand-ICT)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)supported by the Korea Technology and Information Promotion Agency for SMEs(TIPA)supported by the Korean government(Ministry of SMEs and Startups)’s Smart Manufacturing Innovation R&D(RS-2024-00434259).
文摘On-device Artificial Intelligence(AI)accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field,where frequent retraining is crucial due to frequent production changes.Batch normalization(BN)is fundamental to training convolutional neural networks(CNNs),but its implementation in compact accelerator chips remains challenging due to computational complexity,particularly in calculating statistical parameters and gradients across mini-batches.Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources,limiting their practical deployment.We present a hardware-optimized BN accelerator that maintains training accuracy while significantly reducing computational overhead through three novel techniques:(1)resourcesharing for efficient resource utilization across forward and backward passes,(2)interleaved buffering for reduced dynamic random-access memory(DRAM)access latencies,and(3)zero-skipping for minimal gradient computation.Implemented on a VCU118 Field Programmable Gate Array(FPGA)on 100 MHz and validated using You Only Look Once version 2-tiny(YOLOv2-tiny)on the PASCALVisualObjectClasses(VOC)dataset,our normalization accelerator achieves a 72%reduction in processing time and 83%lower power consumption compared to a 2.4 GHz Intel Central Processing Unit(CPU)software normalization implementation,while maintaining accuracy(0.51%mean Average Precision(mAP)drop at floating-point 32 bits(FP32),1.35%at brain floating-point 16 bits(bfloat16)).When integrated into a neural processing unit(NPU),the design demonstrates 63%and 97%performance improvements over AMD CPU and Reduced Instruction Set Computing-V(RISC-V)implementations,respectively.These results confirm that our proposed BN hardware design enables efficient,high-accuracy,and power-saving on-device training for modern CNNs.Our results demonstrate that efficient hardware implementation of standard batch normalization is achievable without sacrificing accuracy,enabling practical on-device CNN training with significantly reduced computational and power requirements.
基金Supported by the National Natural Science Foundation of China(Grant No.62101590).
文摘The present study focuses on simulating supercavitating projectile tail-slaps with an analytical method.A model of 3σ-normal distribution tail-slaps for a supercavitating projectile is established.Meanwhile,theσ-κequation is derived,which is included in this model.Next,the supercavitating projectile tail-slaps are simulated by combining the proposed model and the Logvinovich supercavity section expansion equation.The results show that the number of tail-slaps depends on where the initial several tail-slaps are under the same initial condition.If the distances between the initial several tail-slap positions are large,the number of tail-slaps will considerably decrease,and vice versa.Furthermore,a series of simulations is employed to analyze the influence of the initial angular velocity and the centroid.Analysis of variance is used to evaluate simulation results.The evaluation results suggest that the projectile’s initial angular velocity and centroid have a major impact on the tail-slap number.The larger the value of initial angular velocity,the higher the probability of an increase in tail-slap number.Additionally,the closer the centroid is to the projectile head,the less likely a tail-slap number increase.This study offers important insights into supercavitating projectile tail-slap research.
文摘Renormalization group analysis has been proposed to eliminate secular terms in perturbation solutions of differential equations and thus expand the domain of their validity.Here we extend the method to treat periodic orbits or limit cycles.Interesting normal forms could be derived through a generalization of the concept'resonance',which offers nontrivial analytic approximations.Compared with traditional techniques such as multi-scale methods,the current scheme proceeds in a very straightforward and simple way,delivering not only the period and the amplitude but also the transient path to limit cycles.The method is demonstrated with several examples including the Duffing oscillator,van der Pol equation and Lorenz equation.The obtained solutions match well with numerical results and with those derived by traditional analytic methods.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U23A2047)the General Project of the Natural Science Foundation of Sichuan Province,China(Grant No.2023NSFSC0264).
文摘Rockfall represents a significant geological hazard in mountainous regions,characterized by a sudden and unpredictable feature.The process of dynamic fragmentation and energy conversion in a rockfall event remains complex and not fully understood.This study aims to gain a further understanding of the energy transfer mechanism during rockfall impact and fragmentation by impact tests using a variety of rock-like sphere specimens.The experiments mainly focus on the quantitative correlation between fragmentation degree and influence factors,i.e.impact angle and velocity on steel and granite slabs.The analysis focuses on the energy distribution characteristics,energy dissipation mechanisms,and the energy conversion rate of the fragments during impact and fragmentation.The results show that there is a significant correlation between the energy conversion rate and the fragmentation degree.In normal impact tests,elasto-plastic deformation energy and fracture energy are found to be two primary categories of energy dissipation.The proportion of total kinetic energy after impact is inversely proportional to the initial energy.A comparative analysis between normal and inclined slab impact tests reveals that the impact angle significantly influences the energy conversion rate,which controls the fragmentation degree as well.In addition,the fragmentation degree is inversely proportional to the restitution coefficient.These findings contribute to a better understanding of the energy conversion mechanism during rockfall impact and fragmentation,providing valuable insight for the development of effective strategies to mitigate such rockfall hazards.
基金supported in part by the National Natural Science Foundation(62202118,U24A20241)in part by Major Scientific and Technological Special Project of Guizhou Province([2024]014,[2024]003)+1 种基金in part by Scientific and Technological Research Projects from Guizhou Education Department(Qian jiao ji[2023]003)in part by Guizhou Science and Technology Department Hundred Level Innovative Talents Project(GCC[2023]018).
文摘Deep neural networks remain susceptible to adversarial examples,where the goal of an adversarial attack is to introduce small perturbations to the original examples in order to confuse the model without being easily detected.Although many adversarial attack methods produce adversarial examples that have achieved great results in the whitebox setting,they exhibit low transferability in the black-box setting.In order to improve the transferability along the baseline of the gradient-based attack technique,we present a novel Stochastic Gradient Accumulation Momentum Iterative Attack(SAMI-FGSM)in this study.In particular,during each iteration,the gradient information is calculated using a normal sampling approach that randomly samples around the sample points,with the highest probability of capturing adversarial features.Meanwhile,the accumulated information of the sampled gradient from the previous iteration is further considered to modify the current updated gradient,and the original gradient attack direction is changed to ensure that the updated gradient direction is more stable.Comprehensive experiments conducted on the ImageNet dataset show that our method outperforms existing state-of-the-art gradient-based attack techniques,achieving an average improvement of 10.2%in transferability.