In this paper by virtue of the technique of integration within an ordered product (IWOP) of operators and the intermediate coordinate-momentum representation in quantum optics, we derive the normal ordering and anti...In this paper by virtue of the technique of integration within an ordered product (IWOP) of operators and the intermediate coordinate-momentum representation in quantum optics, we derive the normal ordering and antinormal ordering products of the operator (fQ+gP)n when n is an arbitrary integer. These products are very useful in calculating their matrix elements and expectation values and obtaining some useful mathematical formulae. Finally, the applications of some new identities are given.展开更多
For Hermite polynomials of radial coordinate operator in three-dimensional coordinate space we derive its normal ordering expansion, which are new operator identities. This is done by virtue of the technique of integr...For Hermite polynomials of radial coordinate operator in three-dimensional coordinate space we derive its normal ordering expansion, which are new operator identities. This is done by virtue of the technique of integration within an ordered product of operators. Application of the new formulas is briefly discussed.展开更多
Generally, open string boundary conditions play a nontrivial role in string theory. For example, in the presence of an antisymmetric tensor background field, they will lead the spacetime coordinates noncommutative. In...Generally, open string boundary conditions play a nontrivial role in string theory. For example, in the presence of an antisymmetric tensor background field, they will lead the spacetime coordinates noncommutative. In this paper, we mainly discuss how to build up a generalized Dirichlet normal ordered product of open bosonic string embedding operators that satisfies both the equations of motion and the generalized Dirichlet boundary conditions at the quantum level in the presence of an antisymmetric background field, as the generalized Neumann case has already been discussed in the literature. Further, we also give a brief check of the consistency of the theory under the newly introduced normal ordering.展开更多
By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre...By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre polynomials ∑n=0 (-1)n (n^l)Ln (x) = x^l/n, n-O and its application in deriving the sum rule of the Wingner function of Fock states is demonstrated. Some new expansion identities about the operator Laguerre polynomial are also derived. This opens a new route of deriving mathematical polynomials formulas by virtute of the quantum mechanical representations and operator ordering technique.展开更多
By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wig...By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wigner quantization scheme, and then we convert the Weyl ordered operators into normal ordering by virtue of the normally ordered form of the Wigner operator.展开更多
We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by u...We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.展开更多
Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical oper...Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical operators; we also show that if there exists the eigenvector |q〉λ,v of linear combination of the coordinate and momentum operator, (λQ + vP), where λ,v are real numbers, and |q〉λv is complete, then the projector |q〉λ,vλ,v〈q| must be the Radon transform of Wigner operator. This approach seems concise and physical appealing.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
In this paper, we establish the stochastic ordering of median from an exchangeable trivaxiate normal vector based on the strength of the correlation coefficient. Specifically, by considering two exchangeable trivariat...In this paper, we establish the stochastic ordering of median from an exchangeable trivaxiate normal vector based on the strength of the correlation coefficient. Specifically, by considering two exchangeable trivariate normal vectors with different correlation coefficients, we show that the absolute value of the median in the vector with smaller correlation coefficient is stochastically smaller than the absolute value of the median in the vector with larger correlation coefficient. We prove this result by utilizing skew-normal distributions.展开更多
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original...In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalizati...In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalization. As corollaries, the convergence rates of the distribu- tion and density of maximum are obtained under nonlinear normalization.展开更多
By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater tha...By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater than the existing ways.These products are very useful in obtaining some new differential relations and useful mathematical integral formulas.Further,we derive the normally ordered form of the operator(fQ+gP)^-n with n being an arbitrary positive integer by using the parameter tracing method of operators together with the intermediate coordinate-momentum representation.In addition,general mutual transformation rules of the normal and anti-normal orderings,which have good universality,are derived and hence the anti-normal ordering of(fQ+gP)^-n is also obtained.Finally,the application of some new identities is given.展开更多
In this article, a normalized biholomorphic mapping f defined on bounded starlike circular domain in Cn is considered, where z = 0 is a zero of order k + 1 of f(z) - z. The sharp growth, covering theorems for almos...In this article, a normalized biholomorphic mapping f defined on bounded starlike circular domain in Cn is considered, where z = 0 is a zero of order k + 1 of f(z) - z. The sharp growth, covering theorems for almost starlike mappings of order α and starlike mappings of order α are established. Meanwhile, the construction of the above mappings on bounded starlike circular domain in Cn is also discussed, it provides the extremal mappings for the growth, covering theorems of the above mappings.展开更多
By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization...By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.展开更多
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reyn...The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.展开更多
For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of o...For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No Y2008A23)the Natural Science Foundation of Liaocheng University (Grant No X071049)
文摘In this paper by virtue of the technique of integration within an ordered product (IWOP) of operators and the intermediate coordinate-momentum representation in quantum optics, we derive the normal ordering and antinormal ordering products of the operator (fQ+gP)n when n is an arbitrary integer. These products are very useful in calculating their matrix elements and expectation values and obtaining some useful mathematical formulae. Finally, the applications of some new identities are given.
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘For Hermite polynomials of radial coordinate operator in three-dimensional coordinate space we derive its normal ordering expansion, which are new operator identities. This is done by virtue of the technique of integration within an ordered product of operators. Application of the new formulas is briefly discussed.
基金supported by National Natural Science Foundation and the Doctor Education Fund of the Ministry of Education
文摘Generally, open string boundary conditions play a nontrivial role in string theory. For example, in the presence of an antisymmetric tensor background field, they will lead the spacetime coordinates noncommutative. In this paper, we mainly discuss how to build up a generalized Dirichlet normal ordered product of open bosonic string embedding operators that satisfies both the equations of motion and the generalized Dirichlet boundary conditions at the quantum level in the presence of an antisymmetric background field, as the generalized Neumann case has already been discussed in the literature. Further, we also give a brief check of the consistency of the theory under the newly introduced normal ordering.
基金supported by the National Natural Science Foundation of China (Grant No. 10874174)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20070358009)
文摘By virtue of the coherent state representation and the operator ordering method we find a new approach for transiting Hermite polynomials to Laguerre polynomials. We also derive the new reciprocal relation of Laguerre polynomials ∑n=0 (-1)n (n^l)Ln (x) = x^l/n, n-O and its application in deriving the sum rule of the Wingner function of Fock states is demonstrated. Some new expansion identities about the operator Laguerre polynomial are also derived. This opens a new route of deriving mathematical polynomials formulas by virtute of the quantum mechanical representations and operator ordering technique.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10947017/A05)the Specialized Research Fund for the Doctorial Progress of Higher Education of China (GrantNo. 20070358009)
文摘By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wigner quantization scheme, and then we convert the Weyl ordered operators into normal ordering by virtue of the normally ordered form of the Wigner operator.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10874174 and 10775097
文摘Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical operators; we also show that if there exists the eigenvector |q〉λ,v of linear combination of the coordinate and momentum operator, (λQ + vP), where λ,v are real numbers, and |q〉λv is complete, then the projector |q〉λ,vλ,v〈q| must be the Radon transform of Wigner operator. This approach seems concise and physical appealing.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
文摘In this paper, we establish the stochastic ordering of median from an exchangeable trivaxiate normal vector based on the strength of the correlation coefficient. Specifically, by considering two exchangeable trivariate normal vectors with different correlation coefficients, we show that the absolute value of the median in the vector with smaller correlation coefficient is stochastically smaller than the absolute value of the median in the vector with larger correlation coefficient. We prove this result by utilizing skew-normal distributions.
基金The NSF(11271155) of ChinaResearch Fund(20070183023) for the Doctoral Program of Higher Education
文摘In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
文摘Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
基金Supported by the Natural Science Foundation of China(61673015,61273020)the Fundamental Research Funds for the Central Universities(XDJK2015A007,SWU1809002)+3 种基金the Science Computing and Intelligent Information Processing of Guangxi Higher Education Key Laboratory(GXSCIIP201702)the Science and Technology Plan Project of Guizhou Province(LH[2015]7053,LH[2015]7055)Science and Technology Foundation of Guizhou Province(Qian Ke He Ji Chu[2016]1161)Guizhou Province Natural Science Foundation in China(Qian Jiao He KY[2016]255)
文摘In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalization. As corollaries, the convergence rates of the distribu- tion and density of maximum are obtained under nonlinear normalization.
基金Project supported by the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2016AM03 and ZR2017MA011)the Natural Science Foundation of Heze University,China(Grant Nos.XY17KJ09 and XY18PY13).
文摘By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater than the existing ways.These products are very useful in obtaining some new differential relations and useful mathematical integral formulas.Further,we derive the normally ordered form of the operator(fQ+gP)^-n with n being an arbitrary positive integer by using the parameter tracing method of operators together with the intermediate coordinate-momentum representation.In addition,general mutual transformation rules of the normal and anti-normal orderings,which have good universality,are derived and hence the anti-normal ordering of(fQ+gP)^-n is also obtained.Finally,the application of some new identities is given.
基金The research was supported by the National Nat ural Science Foundation of China(10571164)Specialized Research Fund for the Doctoral Program of Higher Education(20050358052)+1 种基金Guangdong Natural Science Foundation(06301315)the Doctoral Foundation of Zhanjiang Normal University(Z0420)
文摘In this article, a normalized biholomorphic mapping f defined on bounded starlike circular domain in Cn is considered, where z = 0 is a zero of order k + 1 of f(z) - z. The sharp growth, covering theorems for almost starlike mappings of order α and starlike mappings of order α are established. Meanwhile, the construction of the above mappings on bounded starlike circular domain in Cn is also discussed, it provides the extremal mappings for the growth, covering theorems of the above mappings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11147009)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AQ027)the Program of Higher Educational Science and Technology of Shandong Province,China (Grant No. J10LA15)
文摘By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.
文摘The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+1 种基金the National Basic Research Project of China (Grant No. 2011CBA00200)the Young Talents Foundation of Jiangxi Normal University,China
文摘For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.