期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
Statistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects
1
作者 Yin Chen Yu Fei Jianxin Pan 《Open Journal of Statistics》 2015年第6期568-584,共17页
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and varianc... Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies. 展开更多
关键词 Generalized linear Mixed models MULTIVARIATE t DISTRIBUTION MULTIVARIATE Mixture normal DISTRIBUTION Quasi-Monte Carlo NEWTON-RAPHSON Joint modelling of Mean and COVARIANCE
暂未订购
ESTIMATION FOR THE AYMPTOTIC VARIANCE OF PARAMETRIC ESTIMATES IN PARTIAL LINEAR MODEL WITH CENSORED DATA 被引量:2
2
作者 秦更生 蔡雷 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期192-208,共17页
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse... Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn). 展开更多
关键词 Partial linear model Censored data Kernel method Asymptotic normality Thc law of the iterated logarithm.
在线阅读 下载PDF
ASYMPTOTIC PROPERTIES OF ESTIMATORS IN PARTIALLY LINEAR SINGLE-INDEX MODEL FOR LONGITUDINAL DATA 被引量:3
3
作者 田萍 杨林 薛留根 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期677-687,共11页
In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est... In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data. 展开更多
关键词 Longitudinal data partially linear single-index model penalized spline strong consistency asymptotic normality
在线阅读 下载PDF
PARAMETRIC TEST IN PARTIAL LINEAR REGRESSION MODELS
4
作者 高集体 《Acta Mathematica Scientia》 SCIE CSCD 1995年第S1期1-10,共10页
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle... Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates. 展开更多
关键词 Partial linear model Parametric test Asmpptotic normality Nonperametric regression technique.
在线阅读 下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
5
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY MAXIMUM LIKELIHOOD Estimation linear Regression model Log-normal Distribution Weighed LEAST-SQUARES Regression
暂未订购
Estimators of Linear Regression Model and Prediction under Some Assumptions Violation
6
作者 Kayode Ayinde Emmanuel O. Apata Oluwayemisi O. Alaba 《Open Journal of Statistics》 2012年第5期534-546,共13页
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not... The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49). 展开更多
关键词 PREDICTION ESTIMATORS linear Regression model Autocorrelated Error TERMS CORRELATED Stochastic normal Regressors
在线阅读 下载PDF
小样本偏态数据下线性回归模型的统计推断 被引量:1
7
作者 黄明贺 肖松涛 +1 位作者 欧阳应根 李志强 《北京化工大学学报(自然科学版)》 北大核心 2025年第3期132-138,共7页
在小样本实验观测数据下,指标变量间的严重多重共线性和模型误差分布的非对称性会导致无法准确地构建适合的统计模型。在误差服从偏正态分布的假定下,为了克服误差分布的尺度参数和偏度参数的估计值不准确对线性回归模型统计推断产生的... 在小样本实验观测数据下,指标变量间的严重多重共线性和模型误差分布的非对称性会导致无法准确地构建适合的统计模型。在误差服从偏正态分布的假定下,为了克服误差分布的尺度参数和偏度参数的估计值不准确对线性回归模型统计推断产生的影响,基于小样本数据,提出一种利用敏感性分析的方法,可以比较准确地估计模型误差分布的尺度参数和偏度参数。在得到误差分布的参数估计值后,能够对具有严重多重共线性的线性回归模型进行有效地统计推断。首先采用贝叶斯回归结合马尔科夫链蒙特卡洛(MCMC)方法估计模型系数,然后通过后验区间估计进行指标变量筛选,模拟结果表明本文方法能够有效地筛选出最终模型,为具有多重共线性的小样本偏态数据下的线性回归模型的统计推断提供了有价值的替代方案。最后应用所提方法构建了冠醚分子量化参数与铜同位素分馏系数之间的定量构效关系模型。 展开更多
关键词 偏正态分布 线性回归模型 敏感性分析 贝叶斯回归 模型选择
在线阅读 下载PDF
删失指标随机缺失下一般线性模型的加权最小二乘估计
8
作者 饶珍敏 王江峰 +1 位作者 胡康 何姗 《数学物理学报(A辑)》 北大核心 2025年第3期919-933,共15页
该文在删失指标随机缺失下,研究了一般线性模型的加权最小二乘回归估计;基于校准、插值和逆概率三种加权方法,分别构建了参数的估计量;在适当的假设条件下,建立了这些估计量的渐近正态性,并提出了一种新的基于最小二乘加权残差(LSWR)的B... 该文在删失指标随机缺失下,研究了一般线性模型的加权最小二乘回归估计;基于校准、插值和逆概率三种加权方法,分别构建了参数的估计量;在适当的假设条件下,建立了这些估计量的渐近正态性,并提出了一种新的基于最小二乘加权残差(LSWR)的Bootstrap检验程序;最后通过数值模拟和实证,分析了这些估计方法和检验程序的有效性. 展开更多
关键词 删失指标 随机缺失 一般线性模型 渐近正态性 Bootstrap检验
在线阅读 下载PDF
带有参数在线辨识的永磁同步电机模型预测控制研究 被引量:1
9
作者 徐海 米彦青 +1 位作者 王艳阳 徐志鹏 《电气传动》 2025年第2期3-12,共10页
永磁同步电机(PMSM)具有动态响应快、功率密度高、低速大转矩等优点,但是温度变化和复杂工况会造成PMSM参数的变化,进而影响电机性能并且降低效率。针对模型预测电流控制中电机参数变化导致的控制器参数失配问题,首先采用自适应线性(Ada... 永磁同步电机(PMSM)具有动态响应快、功率密度高、低速大转矩等优点,但是温度变化和复杂工况会造成PMSM参数的变化,进而影响电机性能并且降低效率。针对模型预测电流控制中电机参数变化导致的控制器参数失配问题,首先采用自适应线性(Adaline)神经网络进行PMSM的交直轴电感、磁链和电阻等参数在线辨识,然后引入归一化最小均方误差(NLMS)算法对Adaline神经网络算法进行改进,以提高算法的收敛速度和计算精度。此外,利用模型预测控制中的高频电流成分对PMSM转子位置进行计算,获得转子位置角和转速两个参数,以达到无位置传感器控制的目的。实验结果表明,改进后的NLMS-Adaline神经网络相比递推RLS和传统Adaline在线辨识的速度和精确度上都有所提升,对参数失配有良好的适应性。 展开更多
关键词 永磁同步电机 参数在线辨识 自适应线性神经网络 归一化 模型预测电流控制
在线阅读 下载PDF
师范毕业生教师教学效能增值评价指标体系及模型构建——基于多层线性模型
10
作者 张晶晶 栾晓晶 《教师教育论坛》 2025年第2期69-79,96,共12页
教育增值评价的基本思想是考察教育投入与产出之间的关系。本文在文献分析和访谈的基础上,通过问卷调查,构建学生层和教师层影响因素指标体系。作为师范毕业生教师教学效能增值评价的“投入”部分,以学生综合素质发展水平作为师范毕业... 教育增值评价的基本思想是考察教育投入与产出之间的关系。本文在文献分析和访谈的基础上,通过问卷调查,构建学生层和教师层影响因素指标体系。作为师范毕业生教师教学效能增值评价的“投入”部分,以学生综合素质发展水平作为师范毕业生教师教学效能增值评价的“产出”部分,构建多层线性模型,对师范毕业生教师教学效能展开增值性评价研究。基于此,本文提出推进师范毕业生教学效能增值评价实施的三大路径:①顶层设计:坚持落实“五育并举”的教育方针;②技术支撑:推动人工智能赋能数据分析;③社会监督:提升公众信任度;为增值评价在我国的实施建议献策。 展开更多
关键词 师范毕业生教师 教学效能 增值评价 多层线性模型
在线阅读 下载PDF
河北某矿区土壤重金属元素污染特征及来源分析研究 被引量:2
11
作者 余明 边朋沙 +2 位作者 鲁倩 车健 张硕 《黄金》 2025年第2期55-61,88,共8页
为明确河北某矿区土壤重金属元素污染特征及来源,在研究区内选取10个采样点,共采集土壤样本100件;利用综合质量影响指数法计算土壤样本中重金属元素的含量,并与标准值和背景值对比,确定土壤是否存在重金属元素超标现象;利用主成分法与... 为明确河北某矿区土壤重金属元素污染特征及来源,在研究区内选取10个采样点,共采集土壤样本100件;利用综合质量影响指数法计算土壤样本中重金属元素的含量,并与标准值和背景值对比,确定土壤是否存在重金属元素超标现象;利用主成分法与因子分析确定重金属元素来源,同时结合多元线性回归模型得到污染源的贡献率;研究了重金属在土壤和农作物等不同介质中横向和纵向迁移规律。结果发现:研究区内土壤含有不同量的Cu、Cr、Zn、Ni、As元素,且均出现严重超标现象;重金属元素污染源主要为工业活动、煤炭燃烧、交通扬尘、矿区开采和运输扩散,不同介质中的重金属分布迁移规律表明其来源与矿业活动密切相关。研究结果可为该矿区土壤重金属污染防治提供数据支撑。 展开更多
关键词 重金属元素 污染特征 污染来源 多元线性回归模型 背景值超标率 对数正态分布 污染源贡献率
在线阅读 下载PDF
Finite-Time Normal Mode Disturbances and Error Growth During Southern Hemisphere Blocking
12
作者 Jorgen S.FREDERIKSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期69-89,共21页
The structural organization of initially random errors evolving in abarotropic tangent linear model, with time-dependent basic states taken from analyses, is examinedfor cases of block development, maturation and deca... The structural organization of initially random errors evolving in abarotropic tangent linear model, with time-dependent basic states taken from analyses, is examinedfor cases of block development, maturation and decay in the Southern Hemisphere atmosphere duringApril, November, and December 1989. The statistics of 100 evolved errors are studied for six-dayperiods and compared with the growth and structures of fast growing normal modes and finite-timenormal modes (FTNMs). The amplification factors of most initially random errors are slightly lessthan those of the fastest growing FTNM for the same time interval. During their evolution, thestandard deviations of the error fields become concentrated in the regions of rapid dynamicaldevelopment, particularly associated with developing and decaying blocks. We have calculatedprobability distributions and the mean and standard deviations of pattern correlations between eachof the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. Themean of the largest pattern correlation, taken over the five fastest growing FTNMs, increases withincreasing time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but notalways, gives the largest mean pattern correlation with error fields. Corresponding patterncorrelations with the fast growing normal modes of the instantaneous basic state flow aresignificant' but lower than with FTNMs. Mean pattern correlations with fast growing FTNMs increasefurther when the time interval is increased beyond six days. 展开更多
关键词 normal modes finite-time normal modes BLOCKING tangent linear model pattern correlations
在线阅读 下载PDF
Bayesian Diagnostic Checking of the Capital Asset Pricing Model
13
作者 Jun Li Shaun S. Wulff 《Journal of Applied Mathematics and Physics》 2018年第2期321-337,共17页
The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. H... The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. However, a Bayesian model checking procedure is needed to assess the CAPM in terms of the usual regression model assumptions of independence, homogeneity of variance, and normality. This paper develops Bayesian residuals and Bayesian p-values to check these model assumptions as well as to suggest model extensions to the CAPM. 展开更多
关键词 FINANCE model model Expansion linear Regression normalITY OUTLIER RESIDUAL
暂未订购
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
14
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
在线阅读 下载PDF
偏正态条件下多元线性回归模型的统计推断及其应用 被引量:5
15
作者 赵伟凯 杨兰军 +1 位作者 戴琳 吴刘仓 《应用数学》 北大核心 2024年第2期519-529,共11页
本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐... 本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐近性质,给出参数的渐近分布.最后通过数值模拟说明了所提理论和方法的有效性.实例表明模型参数估计的渐近分布具有实际意义. 展开更多
关键词 偏正态分布 多元线性模型 最大似然估计 渐近正态性
在线阅读 下载PDF
Asymptotic normality and strong consistency of maximum quasi-likelihood estimates in generalized linear models 被引量:14
16
作者 YIN Changming, ZHAO Lincheng & WEI Chengdong School of Mathematics and Information Science, Guangxi University, Manning 530004, China Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China Department of Mathematics, Guangxi Teacher College, Manning 530001, China 《Science China Mathematics》 SCIE 2006年第2期145-157,共13页
In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,... In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent. 展开更多
关键词 generalized linear models QUASI-LIKELIHOOD ESTIMATES ASYMPTOTIC normalITY STRONG consistency.
原文传递
Asymptotic Normality of Estimators in Partially Linear Varying Coefficient Models
17
作者 魏传华 吴喜之 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期877-885,共9页
Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the para... Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the parametric and nonparametric components by Profile least-squares procedure which is based on local linear smoothing. The resulting estimators are shown to be asymptotically normal with heteroscedastic error. 展开更多
关键词 asymptotic normality HETEROSCEDASTICITY profile least-squares approach partially linear varying coeffiient model local linear smoothing.
在线阅读 下载PDF
正态线形模型下缺失值的贝叶斯多重插补——基于柑橘数据的分析 被引量:3
18
作者 潘传快 熊巍 祁春节 《华中农业大学学报(社会科学版)》 CSSCI 2017年第1期72-77,共6页
缺失值是调查中普遍存在的问题,利用变量之间的相关关系,可以通过正态线形模型利用不存在缺失值的变量对存在缺失值的变量进行插补。较之单一插补,多重插补更能有效地估计总体方差,因此更多地被使用;特别是采用贝叶斯多重插补,其模型的... 缺失值是调查中普遍存在的问题,利用变量之间的相关关系,可以通过正态线形模型利用不存在缺失值的变量对存在缺失值的变量进行插补。较之单一插补,多重插补更能有效地估计总体方差,因此更多地被使用;特别是采用贝叶斯多重插补,其模型的差数和残差估计均来自相应后验分布的随机抽取,这样对总体方差的估计更为精确。通过大量模拟试验,发现贝叶斯多重插补较之单一插补和一般多重插补能构建更宽的置信区间从而有更准确的总体参数覆盖率,这点在数据缺失比重很大时优势更明显。 展开更多
关键词 缺失值 贝叶斯 多重插补 模拟 正态线性模型
在线阅读 下载PDF
多元线性模型中均值矩阵的函数的所有可容许线性估计 被引量:6
19
作者 陈建宝 邓起荣 《数学物理学报(A辑)》 CSCD 北大核心 1998年第2期134-139,共6页
对于多元正态线性模型0和已知.在三种不同的可容许性意义下,该文分别得到了SX的线性估计LY+D在一切估计类中可容许的充要条件.
关键词 多元正态线性模型 均值矩阵 可容许线性估计
在线阅读 下载PDF
带有结构变化的线性模型中参数估计的一些结果 被引量:4
20
作者 吴启光 徐兴忠 《数学年刊(A辑)》 CSCD 北大核心 2001年第5期607-616,共10页
本文在一些纯量损失和矩阵损失下研究带有结构变化的正态线性模型中参数的估计问题.分别给出 了存在回归系数的一致最小风险无偏(UMRU)估计和一致最小风险同变(UMRE)估计的充要条件, 证明了不存在误差方差在仿射变换群下... 本文在一些纯量损失和矩阵损失下研究带有结构变化的正态线性模型中参数的估计问题.分别给出 了存在回归系数的一致最小风险无偏(UMRU)估计和一致最小风险同变(UMRE)估计的充要条件, 证明了不存在误差方差在仿射变换群下的UMRE估计.导出了回归系数的最小二乘估计的可容许性 和极小极大性. 展开更多
关键词 可容许估计 极小极大估计 一致最小风险无偏估计 线性模型 参数估计 UMRU估计 回归 正态误差
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部