We introduce a new class of meromorphic functions on the plane, *_ normal functions say, their properties are very similarly as the normal functions in the unit disk and give three necessary conditions in judging it...We introduce a new class of meromorphic functions on the plane, *_ normal functions say, their properties are very similarly as the normal functions in the unit disk and give three necessary conditions in judging it. Further we prove that each Julia exceptional function is *_normal and that there exists a *_normal function which has Julia aline.展开更多
In this paper we discuss normal functions concerning shared values. We obtain the follow result. Let F be a family of meromorphic functions in the unit disc A, and a be a nonzero finite complex number. If for any f ∈...In this paper we discuss normal functions concerning shared values. We obtain the follow result. Let F be a family of meromorphic functions in the unit disc A, and a be a nonzero finite complex number. If for any f ∈F, the zeros of f are of multiplicity, f and f′ share a, then there exists a positive number M such that for any f∈F1(1-|z|^2) |f′(z)|/1+|f(z)|^2≤M.展开更多
New criteria for an analytic function to be Bloch and for a meromorphic function to benormal are given. These criteria generalize the recently introduced area integral conditionsinvolving a Green's function.
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent...In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.展开更多
In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based o...In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.展开更多
By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef...Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.展开更多
In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplic...In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.展开更多
Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, a...Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
Let k, m be two positive integers with m ≤ k and let F be a family of zero-free meromorphic functions in a domain D, let h(z) ≡ 0 be a meromorphic function in D with all poles of h has multiplicity at most m. If, fo...Let k, m be two positive integers with m ≤ k and let F be a family of zero-free meromorphic functions in a domain D, let h(z) ≡ 0 be a meromorphic function in D with all poles of h has multiplicity at most m. If, for each f ∈ F, f(k)(z) = h(z) has at most k- m distinct roots(ignoring multiplicity) in D, then F is normal in D. This extends the results due to Chang[1], Gu[3], Yang[11]and Deng[1]etc.展开更多
Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has a...Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.展开更多
Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of h...Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.展开更多
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f...Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f′ and g′ share ψ in D, then F is normal in D.展开更多
文摘We introduce a new class of meromorphic functions on the plane, *_ normal functions say, their properties are very similarly as the normal functions in the unit disk and give three necessary conditions in judging it. Further we prove that each Julia exceptional function is *_normal and that there exists a *_normal function which has Julia aline.
文摘In this paper we discuss normal functions concerning shared values. We obtain the follow result. Let F be a family of meromorphic functions in the unit disc A, and a be a nonzero finite complex number. If for any f ∈F, the zeros of f are of multiplicity, f and f′ share a, then there exists a positive number M such that for any f∈F1(1-|z|^2) |f′(z)|/1+|f(z)|^2≤M.
基金Project Supported in part by the University of Joensuu and the Satte Natural Fund of China.
文摘New criteria for an analytic function to be Bloch and for a meromorphic function to benormal are given. These criteria generalize the recently introduced area integral conditionsinvolving a Green's function.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
文摘In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.
文摘In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.
基金Sponsored by the NSFC (10871076)the RFDP (20050574002)
文摘By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
文摘Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.
基金Supported by the NSF of China(10771220)Supported by the Doctorial Point Fund of National Education Ministry of China(200810780002)
文摘In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.
基金Supported by the NNSF of China(11071083)the Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
文摘Let k, m be two positive integers with m ≤ k and let F be a family of zero-free meromorphic functions in a domain D, let h(z) ≡ 0 be a meromorphic function in D with all poles of h has multiplicity at most m. If, for each f ∈ F, f(k)(z) = h(z) has at most k- m distinct roots(ignoring multiplicity) in D, then F is normal in D. This extends the results due to Chang[1], Gu[3], Yang[11]and Deng[1]etc.
文摘Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.
基金The NNSF (19871050) the RFDP (98042209) of China.
文摘Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.
文摘In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
基金the National Natural Science Foundation of China(Grant Nos.1137113911261029+1 种基金11001081)the Scientific Research Foundation of CUIT(Grant No.KYTZ201403)
文摘Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f′ and g′ share ψ in D, then F is normal in D.