The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the...The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the fuzzy sets theory. While the fuzzy theory is widely used, the completely certain membership function that has no any fuzziness at all has been the bottleneck of the applications of this theory. Cloud models are the effective tools in transforming between qualitative concepts and their quantitative expressions. It can represent the fuzziness and randomness and their relations of uncertain concepts. Also cloud models can show the concept granularity in multi-scale spaces by the digital characteristic Entropy (En). The normal cloud model not only broadens the form conditions of the normal distribution but also makes the normal membership function be the expectation of the random membership degree. In this paper, the universality of the normal cloud model is proved, which is more superior and easier, and can fit the fuzziness and gentleness of human cognitive processing. It would be more applicable and universal in the representation of uncertain notions.展开更多
In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features usin...In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method.展开更多
With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distributi...With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.展开更多
To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, whic...To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, which integrates an intuitionistic cloud model with a fuzzy cognitive map. By virtue of expectancy Ex, entropy En, and hyper entropy He, the risk fuzziness and randomness of the knowledge of experts are organically combined to develop a method for converting bi-linguistic variable decision-making information into the quantitative information of the intuitionistic normal cloud(INC) model. Subsequently, the threshold function and weighted summation operation in the traditional fuzzy cognitive map is converted into the INC ordered weighted averaging operator to create the risk transmission model based on the intuitionistic fuzzy cognitive map(IFCM) and the algorithm for solving it. Subsequently, the risk influence sequencing method based on INC and the risk rating method based on nearness are proposed on the basis of Monte Carlo simulation in order to realize the mutual conversion of the qualitative and quantitative information in the risk evaluation results.Example analysis is presented to verify the effectiveness and practicality of the methods.展开更多
Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between le...Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between leaves and nonphotosynthetic structures to retrieve the leaf normal has been challenging. We used here an approach to accurately retrieve the leaf normals of camphorwood(Cinnamomum camphora) using TLS point cloud data.First, nonphotosynthetic structures were filtered by using the curvature threshold of each point. Then, the point cloud data were segmented by a voxel method and clustered by a Gaussian mixture model in each voxel. Finally, the normal vector of each cluster was computed by principal component analysis to obtain the leaf normal distribution. We collected leaf inclination angles and estimated the distribution, which we compared with the retrieved leaf normal distribution. The correlation coefficient between measurements and obtained results was 0.96, indicating a good coincidence.展开更多
Based on lightning location data in Chongqing region during 1999-2008,the frequency of lightning in various amplitude ranges and its annual variations were analyzed firstly.Afterwards,with the aid of matlab mathematic...Based on lightning location data in Chongqing region during 1999-2008,the frequency of lightning in various amplitude ranges and its annual variations were analyzed firstly.Afterwards,with the aid of matlab mathematical software,the distribution of the lightning location data was fitted using logarithmic normal distribution function.The results showed that after data of cloud-to-ground lightning with current amplitude from-5 to5 kA were deleted from lightning location data,the statistical characteristics of cloud-to-ground lightning could be reflected well.Meanwhile,lightning with current amplitude from-5 to 5 kA accounted for 1.05%(less than 2%),which accorded with the detection principle of lightning position indicator(there existed error detection).Therefore,cloud-to-ground lightning with current amplitude of-5-5 kA in lightning location data of Chongqing region was defined as small amplitude of cloud-to-ground lightning,which could provide scientific references for the processing of lightning location data in Chongqing region as well as analysis and quality control of lightning location data in other regions.展开更多
文摘The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the fuzzy sets theory. While the fuzzy theory is widely used, the completely certain membership function that has no any fuzziness at all has been the bottleneck of the applications of this theory. Cloud models are the effective tools in transforming between qualitative concepts and their quantitative expressions. It can represent the fuzziness and randomness and their relations of uncertain concepts. Also cloud models can show the concept granularity in multi-scale spaces by the digital characteristic Entropy (En). The normal cloud model not only broadens the form conditions of the normal distribution but also makes the normal membership function be the expectation of the random membership degree. In this paper, the universality of the normal cloud model is proved, which is more superior and easier, and can fit the fuzziness and gentleness of human cognitive processing. It would be more applicable and universal in the representation of uncertain notions.
基金Supported by National Natural Science Foundation of China(No.u0935004,61173102)the Fundamental Research Funds for the Central Unibersities(DUT11SX08)
文摘In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method.
基金supported by the State Grid Corporation of China(KJ21-1-56).
文摘With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.
基金supported by the National Natural Science Foundation of China(71501183).
文摘To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, which integrates an intuitionistic cloud model with a fuzzy cognitive map. By virtue of expectancy Ex, entropy En, and hyper entropy He, the risk fuzziness and randomness of the knowledge of experts are organically combined to develop a method for converting bi-linguistic variable decision-making information into the quantitative information of the intuitionistic normal cloud(INC) model. Subsequently, the threshold function and weighted summation operation in the traditional fuzzy cognitive map is converted into the INC ordered weighted averaging operator to create the risk transmission model based on the intuitionistic fuzzy cognitive map(IFCM) and the algorithm for solving it. Subsequently, the risk influence sequencing method based on INC and the risk rating method based on nearness are proposed on the basis of Monte Carlo simulation in order to realize the mutual conversion of the qualitative and quantitative information in the risk evaluation results.Example analysis is presented to verify the effectiveness and practicality of the methods.
文摘Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between leaves and nonphotosynthetic structures to retrieve the leaf normal has been challenging. We used here an approach to accurately retrieve the leaf normals of camphorwood(Cinnamomum camphora) using TLS point cloud data.First, nonphotosynthetic structures were filtered by using the curvature threshold of each point. Then, the point cloud data were segmented by a voxel method and clustered by a Gaussian mixture model in each voxel. Finally, the normal vector of each cluster was computed by principal component analysis to obtain the leaf normal distribution. We collected leaf inclination angles and estimated the distribution, which we compared with the retrieved leaf normal distribution. The correlation coefficient between measurements and obtained results was 0.96, indicating a good coincidence.
文摘Based on lightning location data in Chongqing region during 1999-2008,the frequency of lightning in various amplitude ranges and its annual variations were analyzed firstly.Afterwards,with the aid of matlab mathematical software,the distribution of the lightning location data was fitted using logarithmic normal distribution function.The results showed that after data of cloud-to-ground lightning with current amplitude from-5 to5 kA were deleted from lightning location data,the statistical characteristics of cloud-to-ground lightning could be reflected well.Meanwhile,lightning with current amplitude from-5 to 5 kA accounted for 1.05%(less than 2%),which accorded with the detection principle of lightning position indicator(there existed error detection).Therefore,cloud-to-ground lightning with current amplitude of-5-5 kA in lightning location data of Chongqing region was defined as small amplitude of cloud-to-ground lightning,which could provide scientific references for the processing of lightning location data in Chongqing region as well as analysis and quality control of lightning location data in other regions.