期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
l^k,8-Singular values and spectral radius of rectangular tensors 被引量:1
1
作者 Chen LING Liqun QI 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第1期63-83,共21页
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real ... The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of/k,S-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,S-singular values /vectors, some properties of the related /k'S-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors. 展开更多
关键词 nonnegative rectangular tensor /k S-singular value /k'S-spectralradius IRREDUCIBILITY weak irreducibility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部