期刊文献+
共找到2,623篇文章
< 1 2 132 >
每页显示 20 50 100
Real-Time Programmable Nonlinear Wavefront Shaping with Si Metasurface Driven by Genetic Algorithm
1
作者 Ze Zheng Gabriel Sanderson +4 位作者 Soheil Sotoodeh Chris Clifton Cuifeng Ying Mohsen Rahmani Lei Xu 《Engineering》 2025年第6期90-95,共6页
Nonlinear wavefront shaping is crucial for advancing optical technologies,enabling applications in optical computation,information processing,and imaging.However,a significant challenge is that once a metasurface is f... Nonlinear wavefront shaping is crucial for advancing optical technologies,enabling applications in optical computation,information processing,and imaging.However,a significant challenge is that once a metasurface is fabricated,the nonlinear wavefront it generates is fixed,offering little flexibility.This limitation often necessitates the fabrication of different metasurfaces for different wavefronts,which is both time-consuming and inefficient.To address this,we combine evolutionary algorithms with spatial light modulators(SLMs)to dynamically control wavefronts using a single metasurface,reducing the need for multiple fabrications and enabling the generation of arbitrary nonlinear wavefront patterns without requiring complicated optical alignment.We demonstrate this approach by introducing a genetic algorithm(GA)to manipulate visible wavefronts converted from near-infrared light via third-harmonic generation(THG)in a silicon metasurface.The Si metasurface supports multipolar Mie resonances that strongly enhance light-matter interactions,thereby significantly boosting THG emission at resonant positions.Additionally,the cubic relationship between THG emission and the infrared input reduces noise in the diffractive patterns produced by the SLM.This allows for precise experimental engineering of the nonlinear emission patterns with fewer alignment constraints.Our approach paves the way for self-optimized nonlinear wavefront shaping,advancing optical computation and information processing techniques. 展开更多
关键词 nonlinear metasurface genetic algorithm Wavefront manipulation
在线阅读 下载PDF
Cat Swarm Algorithm Generated Based on Genetic Programming Framework Applied in Digital Watermarking
2
作者 Shu-Chuan Chu Libin Fu +2 位作者 Jeng-Shyang Pan Xingsi Xue Min Liu 《Computers, Materials & Continua》 2025年第5期3135-3163,共29页
Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm... Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency. 展开更多
关键词 Cat swarm algorithm genetic programming digital watermarking update mode mode generation framework
在线阅读 下载PDF
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
3
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
Improved genetic algorithm for nonlinear programming problems 被引量:8
4
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
Solution for integer linear bilevel programming problems using orthogonal genetic algorithm 被引量:10
5
作者 Hong Li Li Zhang Yongchang Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期443-451,共9页
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith... An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 integer linear bilevel programming problem integer optimization genetic algorithm orthogonal experiment design
在线阅读 下载PDF
Exponential distribution-based genetic algorithm for solving mixed-integer bilevel programming problems 被引量:4
6
作者 Li Hecheng Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1157-1164,共8页
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f... Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust. 展开更多
关键词 mixed-integer nonlinear bilevel programming genetic algorithm exponential distribution optimalsolutions
在线阅读 下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
7
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
在线阅读 下载PDF
Linear-in-Parameter Models Based on Parsimonious Genetic Programming Algorithm and Its Application to Aero-Engine Start Modeling 被引量:3
8
作者 李应红 尉询楷 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期295-303,共9页
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio... A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM. 展开更多
关键词 aerospace propulsion system linear-in-parameter nonlinear model Parsimonious genetic programming (PGP) aero-engine dynamic start model
在线阅读 下载PDF
Prediction of Concrete Faced Rock Fill Dams Settlements Using Genetic Programming Algorithm 被引量:3
9
作者 Seyed Morteza Marandi Seyed Mahmood VaeziNejad Elyas Khavari 《International Journal of Geosciences》 2012年第3期601-609,共9页
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a... In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived. 展开更多
关键词 CONCRETE FACED Rock-Fill DAMS SETTLEMENT genetic programming algorithm Finite Element Model
暂未订购
Hierarchical On-line Scheduling of Multiproduct Batch Plants with a Combined Approach of Mathematical Programming and Genetic Algorithm 被引量:1
10
作者 陈理 王克峰 +1 位作者 徐霄羽 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期78-84,共7页
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ... In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants. 展开更多
关键词 online scheduling multiproduct batch plant mixed integer nonlinear programming mathematical programming genetic algorithm
在线阅读 下载PDF
Genetic Algorithm for Solving Quadratic Bilevel Programming Problem 被引量:1
11
作者 WANG Guangmin WAN Zhongping +1 位作者 WANG Xianjiai FANG Debin 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期421-425,共5页
By applying Kuhn-Tucker condition the quadratic bilevel programming, a class of bilevel programming, is transformed into a single level programming problem, which can be simplified by some rule. So we can search the o... By applying Kuhn-Tucker condition the quadratic bilevel programming, a class of bilevel programming, is transformed into a single level programming problem, which can be simplified by some rule. So we can search the optimal solution in the feasible region, hence reduce greatly the searching space. Numerical experiments on several literature problems show that the new algorithm is both feasible and effective in practice. 展开更多
关键词 quadratic bilevel programming genetic algorithm optimal solution
在线阅读 下载PDF
Comparison between dynamic programming and genetic algorithm for hydro unit economic load dispatch
12
作者 Bin XU Ping-an ZHONG +2 位作者 Yun-fa ZHAO Yu-zuo ZHU Gao-qi ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第4期420-432,共13页
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving... The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases. 展开更多
关键词 hydro unit economic load dispatch dynamic programming genetic algorithm numerical experiment
在线阅读 下载PDF
An adaptive genetic algorithm for solving bilevel linear programming problem
13
作者 王广民 王先甲 +1 位作者 万仲平 贾世会 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第12期1605-1612,共8页
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr... Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references. 展开更多
关键词 bilevel linear programming genetic algorithm fitness value adaptive operator probabilities crossover and mutation
在线阅读 下载PDF
An Innovative Genetic Algorithms-Based Inexact Non-Linear Programming Problem Solving Method
14
作者 Weihua Jin Zhiying Hu Christine Chan 《Journal of Environmental Protection》 2017年第3期231-249,共19页
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor... In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty. 展开更多
关键词 genetic algorithms INEXACT NON-LINEAR programming (INLP) ECONOMY of Scale Numeric Optimization Solid Waste Management
在线阅读 下载PDF
MDA-TOEPGA:A novel method to identify miRNA-disease association based on two-objective evolutionary programming genetic algorithm
15
作者 BUWEN CAO JIAWEI LUO +1 位作者 SAINAN XIAO XIANGJUN ZHOU 《BIOCELL》 SCIE 2022年第8期1925-1933,共9页
The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full... The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full landscape of association between miRNA and disease.Hence there is strong need of new computational method to identify the associations from miRNA group view.In this paper,we proposed a framework,MDA-TOEPGA,to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm,which identifies latent miRNAdisease associations from the view of functional module.To understand the miRNA functional module in diseases,the case study is presented.We have been compared MDA-TOEPGA with several state-of-the-art functional module algorithm.Experimental results showed that our method cannot only outperform classical algorithms,such as K-means,IK-means,MCODE,HC-PIN,and ClusterONE,but can also achieve an ideal overall performance in terms of a composite score consisting of f1,Sensitivity,and Accuracy.Altogether,our study showed that MDA-TOEPGA is a promising method to investigate miRNA-disease association from the landscapes of functional module. 展开更多
关键词 MiRNA functional module MiRNA-disease association Two-objective Evolutionary programming genetic algorithm
在线阅读 下载PDF
A Genetic Programming-PCA Hybrid Face Recognition Algorithm
16
作者 Behzad Bozorgtabar Gholam Ali Rezai Rad 《Journal of Signal and Information Processing》 2011年第3期170-174,共5页
Increasing demand for a fast and reliable face recognition technology has obliged researchers to try and examine different pattern recognition schemes. But until now, Genetic Programming (GP), acclaimed pattern recogn... Increasing demand for a fast and reliable face recognition technology has obliged researchers to try and examine different pattern recognition schemes. But until now, Genetic Programming (GP), acclaimed pattern recognition, data mining and relation discovery methodology, has been neglected in face recognition literature. This paper tries to apply GP to face recognition. First Principal Component Analysis (PCA) is used to extract features, and then GP is used to classify image groups. To further improve the results, a leveraging method is also utilized. It is shown that although GP might not be efficient in its isolated form, a leveraged GP can offer results comparable to other Face recognition solutions. 展开更多
关键词 FACE Recognition Principal Component Analysis genetic programming Leveraging algorithm
在线阅读 下载PDF
An Enhanced Genetic Programming Algorithm for Optimal Controller Design
17
作者 Rami A. Maher Mohamed J. Mohamed 《Intelligent Control and Automation》 2013年第1期94-101,共8页
This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The proposed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main id... This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The proposed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main ideas concerning the initial population, the tree structure, genetic operations, and other proposed non-genetic operations are discussed in details. An optimization algorithm called numeric constant mutation is embedded to strengthen the search for the optimal solutions. The results of solving the optimal control for linear as well as nonlinear systems show the feasibility and effectiveness of the proposed MBFGP as compared to the optimal solutions which are based on numerical methods. Furthermore, this algorithm enriches the set of suboptimal state feedback controllers to include controllers that have product time-state terms. 展开更多
关键词 genetic programming OPTIMAL CONTROL nonlinear CONTROL System
暂未订购
Genetic Algorithm-Based Estimation of Nonlinear Transducer
18
作者 庄哲民 黄惟一 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期4-7,共4页
This paper describes an innovative, genetic algorithm based inverse model of nonlinear transducer. In the inverse modeling, using a genetic algorithm, the unknown coefficients of the model are estimated accurately. T... This paper describes an innovative, genetic algorithm based inverse model of nonlinear transducer. In the inverse modeling, using a genetic algorithm, the unknown coefficients of the model are estimated accurately. The simulation results indicate that this technique provides greater flexibility and suitability than the existing methods. It is very easy to modify the nonlinear transducer on line. Thus the method improves the transducer's accuracy. With the help of genetic algorithm (GA), the model coefficients' training are less likely to be trapped in local minima than traditional gradient based search algorithms. 展开更多
关键词 nonlinear transducer genetic algorithm inverse model
在线阅读 下载PDF
Design strategy of advanced generation breeding population of Pinus tabuliformis based on genetic variation and inbreeding level
19
作者 Chengcheng Zhou Fan Sun +2 位作者 Zhiyuan Jiao Yousry A.El-Kassaby Wei Li 《Forest Ecosystems》 2025年第4期607-618,共12页
The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding... The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards. 展开更多
关键词 Breeding population Parental selection strategies Advanced generation seed orchard Pinus tabuliformis Seed orchard design Improved Adaptive genetic programming algorithm
在线阅读 下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
20
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor genetic algorithm Profile optimization Matlab programming Overflow area
原文传递
上一页 1 2 132 下一页 到第
使用帮助 返回顶部