This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonli...This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.展开更多
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi...A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example.展开更多
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u...This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.展开更多
The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonli...The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied with bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.展开更多
In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimens...In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.展开更多
文摘This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.
基金supported by the National Natural Science Foundation of China (60874117)the 111 Project (B07009)
文摘A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example.
基金supported by the National Natural Science Foundation of China(No.11532002)
文摘This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.
基金Supported by the National Basic Research Programme(2012CB720500)the National Natural Science Foundation of China(21306100)
文摘The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied with bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.
基金supported by the National Natural Science Foundation of China under Grant No.11688101
文摘In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.