An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing t...An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.展开更多
A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theore...A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.展开更多
In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we des...In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we design a distributed NE seeking algorithm by incorporating the non-smooth finite-time average tracking dynamics,where each agent only needs to know its own action and exchange information with its neighbours through a communication graph.We give a sufficient condition for the Lipschitz continuity of the best response mapping for potential games,and then prove the convergence of the proposed algorithm based on the Lyapunov theory.Numerical simulations are given to verify the resultandillustrate the effectiveness of the algorithm.展开更多
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.
文摘A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.
基金This work was supported by the Shanghai Sailing Program(No.20YF1453000)the Fundamental Research Funds for the Central Universities(No.22120200048).
文摘In this paper,we consider distributed Nash equilibrium(NE)seeking in potential games over a multi-agent network,where each agent can not observe the actions of all its rivals.Based on the best response dynamics,we design a distributed NE seeking algorithm by incorporating the non-smooth finite-time average tracking dynamics,where each agent only needs to know its own action and exchange information with its neighbours through a communication graph.We give a sufficient condition for the Lipschitz continuity of the best response mapping for potential games,and then prove the convergence of the proposed algorithm based on the Lyapunov theory.Numerical simulations are given to verify the resultandillustrate the effectiveness of the algorithm.