Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. Fr...An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.展开更多
Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical stud...Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.展开更多
We study the steady-state entanglement and heat current of two coupled qubits,in which two qubits are connected with two independent heat baths(IHBs)or two common heat baths(CHBs).We construct the master equation in t...We study the steady-state entanglement and heat current of two coupled qubits,in which two qubits are connected with two independent heat baths(IHBs)or two common heat baths(CHBs).We construct the master equation in the eigenstate representation of two coupled qubits to describe the dynamics of the total system and derive the solutions in the steadystate with stronger coupling regime between two qubits than qubit–baths.We do not make the rotating wave approximation(RWA)for the qubit–qubit interaction,and so we are able to investigate the behaviors of the system in both the strong coupling regime and the weak coupling regime,respectively.In an equilibrium bath,we find that the entanglement decreases with the bath temperature and energy detuning increasing under the strong coupling regime.In the weak coupling regime,the entanglement increases with coupling strength increasing and decreases with the bath temperature and energy detuning increasing.In a nonequilibrium bath,the entanglement without RWA is useful for entanglement at lower temperatures.We also study the heat currents of the two coupled qubits and their variations with the energy detuning,coupling strength and low temperature.In the strong(weak)coupling regime,the heat current increases(decreases)with coupling strength increasing when the temperature of one bath is lower(higher)than the other,and the energy detuning leads to a positive(negative)effect when the temperature is low(high).In the weak coupling regime,the variation trend of heat current is opposite to that of coupling strength for the IHB case and the CHB case.展开更多
A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are pr...A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are presented.展开更多
An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- t...An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- tent with the precious such as using the operator method. Furthermore, the Jaynes-Cummings Hamiltonian including the anti-rotating term is also solved precisely using this accurate way so that results agree with experiments better. Essences of the anti-rotating term are revealed. We discuss the relations of the phenomenon of atomic collapse and revival with the average photons number, the light field phase angle, the resonant frequency, and the size of coupling constant. The discussions may make one select suitable conditions to carry out experiment well and study the virtual light field effect on cavity quantum electrodynamics.展开更多
Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in differ...Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavit.展开更多
In the limit of weak coupling between a system and its reservoir,we derive the time-convolutionless(TCL) nonMarkovian master equation for a two-level system interacting with a zero-temperature structured environment...In the limit of weak coupling between a system and its reservoir,we derive the time-convolutionless(TCL) nonMarkovian master equation for a two-level system interacting with a zero-temperature structured environment with no rotating wave approximation(NRWA).By comparing the dynamics with RWA,we demonstrate the impact of RWA on the system dynamics,as well as the effects of non-Markovianity on the preservation of atomic coherence,squeezing,and entanglement.展开更多
We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the b...We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the bifurcated branches of the Y-shaped granular chains. We obtain the analytic results of the ratios of the transmitted and reflected speeds to the incident speed of the solitary wave, the maximum force between the two neighbor beads in a solitary wave, and the total time taken by the pulse to pass through each branch. All of the analytic results are in good agreement with the experimental observations from Daraio et al. [Phys. Rev. E 82 036603 (2010)]. Moreover, we also discuss the delay effects on the arrival of split pulses, and predict the recombination of the split waves traveling in branches in the final stem of asymmetric systems. The prediction of pulse recombination is verified by our numerical results.展开更多
We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship w...We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship waves are represented by the B-Spline formulae. Different ship waves are approximated by cubic B-spline and the first and second order derivates of incident waves are calculated and compared with analytical value. It approves that this numerical method has sufficient accuracy and can be also applied to approximate the velocity potential on the free surface.展开更多
We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply...We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.展开更多
Quantum state discrimination is an important part of quantum information processing.We investigate the discrimination of coherent states through a Jaynes-Cummings(JC)model interaction between the field and the ancilla...Quantum state discrimination is an important part of quantum information processing.We investigate the discrimination of coherent states through a Jaynes-Cummings(JC)model interaction between the field and the ancilla without rotation wave approximation(RWA).We show that the minimum failure probability can be reduced as RWA is eliminated from the JC model and the non-RWA terms accompanied by the quantum effects of fields(e.g.the virtualphoton process in the JC model without RWA)can enhance the state discrimination.The JC model without RWA for unambiguous state discrimination is superior to ambiguous state discrimination,particularly when the number of sequential measurements increases.Unambiguous state discrimination implemented via the non-RWA JC model is beneficial to saving resource costs.展开更多
In this note, I introduce a mysterious approximation called the rotating wave approximation (RWA) to undergraduates or non-experts who are interested in both Mathematics and Quantum Optics. In Quantum Optics, it plays...In this note, I introduce a mysterious approximation called the rotating wave approximation (RWA) to undergraduates or non-experts who are interested in both Mathematics and Quantum Optics. In Quantum Optics, it plays a very important role in order to obtain an analytic approximate solution of some SchrÖdinger equation, while it is curious from the mathematical point of view. I explain it carefully with two coherent oscillations for them and expect that they will overcome the problem in the near future.展开更多
An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for di...An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.展开更多
The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entangleme...The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole-dipole interaction of the two atoms.展开更多
In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtaine...In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.展开更多
The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results...The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.展开更多
In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effec...Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.展开更多
The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,w...The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
基金sponsored by the National Natural Science Foundation of China (Nos. 40774069 and 40974074)the State Key Program of National Natural Science of China (No. 40830424)the National 973program (No. 007209603)
文摘An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579146,51490674,and51609101)the Shanghai Rising-Star Program(Grant No.16QA1402300)
文摘Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115 and 11704221)
文摘We study the steady-state entanglement and heat current of two coupled qubits,in which two qubits are connected with two independent heat baths(IHBs)or two common heat baths(CHBs).We construct the master equation in the eigenstate representation of two coupled qubits to describe the dynamics of the total system and derive the solutions in the steadystate with stronger coupling regime between two qubits than qubit–baths.We do not make the rotating wave approximation(RWA)for the qubit–qubit interaction,and so we are able to investigate the behaviors of the system in both the strong coupling regime and the weak coupling regime,respectively.In an equilibrium bath,we find that the entanglement decreases with the bath temperature and energy detuning increasing under the strong coupling regime.In the weak coupling regime,the entanglement increases with coupling strength increasing and decreases with the bath temperature and energy detuning increasing.In a nonequilibrium bath,the entanglement without RWA is useful for entanglement at lower temperatures.We also study the heat currents of the two coupled qubits and their variations with the energy detuning,coupling strength and low temperature.In the strong(weak)coupling regime,the heat current increases(decreases)with coupling strength increasing when the temperature of one bath is lower(higher)than the other,and the energy detuning leads to a positive(negative)effect when the temperature is low(high).In the weak coupling regime,the variation trend of heat current is opposite to that of coupling strength for the IHB case and the CHB case.
文摘A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are presented.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.09JJ6011the Natural Science Foundation of Education Department of Hunan Province under Grant Nos.10A100 and 07C528
文摘An accurate method to solve the daynes Cummings (J-C) Hamiltonian has been investigated here. The phenomenon of atomic collapse and revival predicted by Jaynes-Cummings model is demonstrated. Solutions are consis- tent with the precious such as using the operator method. Furthermore, the Jaynes-Cummings Hamiltonian including the anti-rotating term is also solved precisely using this accurate way so that results agree with experiments better. Essences of the anti-rotating term are revealed. We discuss the relations of the phenomenon of atomic collapse and revival with the average photons number, the light field phase angle, the resonant frequency, and the size of coupling constant. The discussions may make one select suitable conditions to carry out experiment well and study the virtual light field effect on cavity quantum electrodynamics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Education Ministry of Hunan Province,China (Grant No. 06A038)the Natural Science Foundation of Hunan Province,China (Grant No. 07JJ3013
文摘Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavit.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050)the National Basic Research Program of China(Grant No. 2007CB925204)the Construct Program of the National Key Discipline,China
文摘In the limit of weak coupling between a system and its reservoir,we derive the time-convolutionless(TCL) nonMarkovian master equation for a two-level system interacting with a zero-temperature structured environment with no rotating wave approximation(NRWA).By comparing the dynamics with RWA,we demonstrate the impact of RWA on the system dynamics,as well as the effects of non-Markovianity on the preservation of atomic coherence,squeezing,and entanglement.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921002)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010LKWL09)
文摘We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the bifurcated branches of the Y-shaped granular chains. We obtain the analytic results of the ratios of the transmitted and reflected speeds to the incident speed of the solitary wave, the maximum force between the two neighbor beads in a solitary wave, and the total time taken by the pulse to pass through each branch. All of the analytic results are in good agreement with the experimental observations from Daraio et al. [Phys. Rev. E 82 036603 (2010)]. Moreover, we also discuss the delay effects on the arrival of split pulses, and predict the recombination of the split waves traveling in branches in the final stem of asymmetric systems. The prediction of pulse recombination is verified by our numerical results.
文摘We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship waves are represented by the B-Spline formulae. Different ship waves are approximated by cubic B-spline and the first and second order derivates of incident waves are calculated and compared with analytical value. It approves that this numerical method has sufficient accuracy and can be also applied to approximate the velocity potential on the free surface.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0304202 and 2017YFA0205700)the National Natural Science Foundation of China(Grant Nos.11875231 and 11935012)the Fundamental Research Funds for the Central Universities(Grant No.2018FZA3005).
文摘We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.
基金funded by the NSF of China(Grant Nos.11675119,12075159,11575125,12171044)Shanxi Education Department Fund(2020L0543)+3 种基金Beijing Natural Science Foundation(Z190005)Academy for Multidisciplinary Studies,Capital Normal Universitythe Academician Innovation Platform of Hainan Provincethe Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology(No.SIQSE202001)
文摘Quantum state discrimination is an important part of quantum information processing.We investigate the discrimination of coherent states through a Jaynes-Cummings(JC)model interaction between the field and the ancilla without rotation wave approximation(RWA).We show that the minimum failure probability can be reduced as RWA is eliminated from the JC model and the non-RWA terms accompanied by the quantum effects of fields(e.g.the virtualphoton process in the JC model without RWA)can enhance the state discrimination.The JC model without RWA for unambiguous state discrimination is superior to ambiguous state discrimination,particularly when the number of sequential measurements increases.Unambiguous state discrimination implemented via the non-RWA JC model is beneficial to saving resource costs.
文摘In this note, I introduce a mysterious approximation called the rotating wave approximation (RWA) to undergraduates or non-experts who are interested in both Mathematics and Quantum Optics. In Quantum Optics, it plays a very important role in order to obtain an analytic approximate solution of some SchrÖdinger equation, while it is curious from the mathematical point of view. I explain it carefully with two coherent oscillations for them and expect that they will overcome the problem in the near future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204097 and 41130418)the China National Major Science and Technology Project (2011ZX05023-005-004)
文摘An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060357008)+2 种基金Anhui Provincial Natural Science Foundation of China (Grant No 070412060)the Key Program of the Education Department of Anhui Province of China (Grant No KJ2008A28ZC)Anhui Key Laboratory of Information Materials and Devices (Anhui University of China)
文摘The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole-dipole interaction of the two atoms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11075099, 11047167, and 11105087)the Programme of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201002)+1 种基金the National Fundamental Fund of Personnel Training (Grant No. J1103210)the Youth Science Foundation of Shanxi Province of China (Grant No. 2010021003-2)
文摘In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.
基金Project supported by the Fundamental Research Funds for the Central University of China(Grant No.13CX02019A)
文摘The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.
基金Supported by the National Natural Science Foundation of China under Grant No.40876010the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q03-08+2 种基金the LASG State Key Laboratory Special Fundthe Foundation of Shanghai Municipal Education Commission under Grant No.E03004the Natural Science Foundation of Zhejiang Province under Grant No.Y6090164
文摘In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.
基金financially supported by the National Natural Science Foundation of China(Grant No.42104131)the Natural Science Foundation of Sichuan Province of China(Grant No.2022NSFSC1140)Open Fund(PLC20211101)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
文摘The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.