Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary...Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.展开更多
Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, ...Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, a non-parametric indicator Kriging method has been proposed for generating coastal sediment map. The method can effectively avoid mapping subjectivity, has no special requirements for the sample data to meet second-order stationary or normal distribution, and can also provide useful information on the quantitative evaluation of mapping uncertainty. The application of the method in the southern sea area of Lianyungang showed that much more convincing mapping results could be obtained compared with the traditional methods such as IDW, Kriging and Voronoi diagram under the same condition, so the proposed method was applicable with great utilization value.展开更多
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting...Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.展开更多
Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a specie...Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a species within the genus Akebia Decne.,is valued for its use in food,traditionalmedicine,oil production,and as an ornamental plant.Curcumin,widely recognized for its pharmacological properties including anti-cancer,anti-neuroinflammatory,and anti-fibrotic effects,has recently drawn interest for its potential roles in plant stress responses.However,its impact on plant tolerance to saline-alkali stress remains poorly understood.In this study,the effects of curcumin on saline-alkali resistance in A.trifoliata were examined by subjecting plants to a saline-alkali solution containing 150 mmol/L sodium ions(a mixture of Na_(2)SO_(4),Na_(2)CO_(3),and NaHCO_(3)).Curcumin treatment under these stress conditions leads to anatomical improvements in leaf structure.Furthermore,A.trifoliatamaintained a favorable Na^(+)/K^(+)ratio through increased potassium uptake and reduced sodium accumulation.Biochemical analysis revealed elevated levels of proline,soluble sugars,and soluble proteins,along with improved activities of antioxidant enzymes such as superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD).Similarly,the concentrations of hydrogen peroxide(H_(2)O_(2))and malondialdehyde(MDA)were significantly reduced.Transcriptome analysis under saline-alkali stress conditions showed that curcumin influenced seven keymetabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,with differentially expressed unigenes primarily enriched in transcription factor families such as MYB,AP2/ERF,NAC,bHLH,and C2C2.Moreover,eight differentially expressed genes(DEGs)associated with plant hormone signal transduction were linked to the auxin and brassinosteroid pathways,critical for cell elongation and plant growth.These findings indicate that curcumin increases saline-alkali stress tolerance in A.trifoliata by modulating physiological,biochemical,and transcriptional responses,ultimately supporting improved growth under adverse conditions.展开更多
The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from...The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from an object point.However,a non-parametric model requires a sophisticated calculation process or high-cost devices to obtain a massive quantity of parameters.These disadvantages limit the application of camera models.Therefore,we propose a novel camera model calibration method based on a single-axis rotational target.The rotational vision target offers 3D control points with no need for detailed information of poses of the rotational target.Radial basis function(RBF)network is introduced to map 3D coordinates to 2D image coordinates.We subsequently derive the optimization formulization of imaging model parameters and compute the parameter from the given control points.The model is extended to adapt the stereo camera that is widely used in vision measurement.Experiments have been done to evaluate the performance of the proposed camera calibration method.The results show that the proposed method has superiority in accuracy and effectiveness in comparison with the traditional methods.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
By using the non parametric least square method, the strong consistent estimations of distribution function and failure function are established,where the distribution function F(x) after logist transformation is...By using the non parametric least square method, the strong consistent estimations of distribution function and failure function are established,where the distribution function F(x) after logist transformation is assumed to be approximated by a polynomial.The performance of simulation shows that the estimations are highly satisfactory.展开更多
Oxygen uptake plays a crucial role in the evaluation of endurance performance during exercise and is extensively utilized for metabolic assessment. This study records the oxygen uptake during the exercise phase (i.e.,...Oxygen uptake plays a crucial role in the evaluation of endurance performance during exercise and is extensively utilized for metabolic assessment. This study records the oxygen uptake during the exercise phase (i.e., ascending or descending) of the stair exercise, utilizing an experimental dataset that includes ten participants and covers various exercise periods. Based on the designed experiment protocol, a non-parametric modeling method with kernel-based regularization is generally applied to estimate the oxygen uptake changes during the switching stairs exercise, which closely resembles daily life activities. The modeling results indicate the effectiveness of the non-parametric modeling approach when compared to fixed-order models in terms of accuracy, stability, and compatibility. The influence of exercise duration on estimated fitness reveals that the model of the phase-oxygen uptake system is not time-invariant related to respiratory metabolism regulation and muscle fatigue. Consequently, it allows us to study the humans’ conversion mechanism at different metabolic rates and facilitates the standardization and development of exercise prescriptions.展开更多
This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with unc...This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.展开更多
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections ...The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.展开更多
A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations fr...A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations from 1986 to 2016 inside and outside Ninh Thuan province. To do the research, the author uses a non-parametric analysis method and the drought index calculation method. Specifically, with the non-parametric method, the author uses the analysis, Mann-Kendall (MK) and Theil-Sen (Sen’s slope), and to analyze drought, the author uses the Standardized Precipitation Index (SPI) and the Moisture Index (MI). Two Softwares calculated in this study are ProUCL 5.1 and MAKENSEN 1.0 by the US Environmental Protection Agency and Finnish Meteorological Institute. The calculation results show that meteorological drought will decrease in the future with areas such as Phan Rang, Song Pha, Quan The, Ba Thap tend to increase very clearly, while Tam My and Nhi Ha tend to increase very clearly short. With the agricultural drought, the average MI results increased 0.013 per year, of which Song Pha station tended to increase the highest with 0.03 per year and lower with Nhi Ha with 0.001 per year. The forecast results also show that by the end of the 21st century, the SPI tends to decrease with SPI 1 being <span style="white-space:nowrap;">−</span>0.68, SPI 3 being <span style="white-space:nowrap;">−</span>0.40, SPI 6 being <span style="white-space:nowrap;">−</span>0.25, SPI 12 is 0.42. Along with that is the forecast that the MI index will increase 0.013 per year to 2035, the MI index is 0.93, in 2050 it is 1.13, in 2075 it will be 1.46, and by 2100 it is 1.79. Research results will be used in policymaking, environmental resources management agencies, and researchers to develop and study solutions to adapt and mitigate drought in the context of variable climate change.展开更多
The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determinin...The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determining whether there is any change in the biomarker of the patient. It is important to study how the biomarker changes due to treatment and whether for different individuals located in separate centers can be clustered together since they might have different distributions. The study is motivated by a Bayesian non-parametric mixture model, which is more flexible when compared to the Bayesian Parametric models and is capable of borrowing information across different centers allowing them to be grouped together. To this end, this research modeled Biological markers taking into consideration the Surrogate markers. The study employed the nested Dirichlet process prior, which is easily peaceable on different distributions for several centers, with centers from the same Dirichlet process component clustered automatically together. The study sampled from the posterior by use of Markov chain Monte carol algorithm. The model is illustrated using a simulation study to see how it performs on simulated data. Clearly, from the simulation study it was clear that, the model was capable of clustering data into different clusters.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 61841103,61673164,and 61602397in part by the Natural Science Foundation of Hunan Provincial under Grants 2016JJ2041 and 2019JJ50106+1 种基金in part by the Key Project of Education Department of Hunan Provincial under Grant 18B385and in part by the Graduate Research Innovation Projects of Hunan Province under Grants CX2018B805 and CX2018B813.
文摘Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.
基金supported by Natural Science Fund for colleges and universities in Jiangsu Province(No. 07KJD170012)Natural Science Fund of Huaihai Institute of Technology (No. Z2008009)
文摘Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, a non-parametric indicator Kriging method has been proposed for generating coastal sediment map. The method can effectively avoid mapping subjectivity, has no special requirements for the sample data to meet second-order stationary or normal distribution, and can also provide useful information on the quantitative evaluation of mapping uncertainty. The application of the method in the southern sea area of Lianyungang showed that much more convincing mapping results could be obtained compared with the traditional methods such as IDW, Kriging and Voronoi diagram under the same condition, so the proposed method was applicable with great utilization value.
文摘Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.
基金supported by the National Natural Science Foundation of China(Number:32060645)The Joint Special Project(Key Project)of Yunnan Province Local Undergraduate University(202101BA070001-036)+2 种基金The Joint Special Project(Surface Project)of Yunnan Province Local Undergraduate University(202101BA070001-172)the Science Research Fund Project for Education Department of Yunnan Province(Numbers:2023Y0876,2023Y0860,2023J0828)the Basic Research Special Project for Science and Technology Department of Yunnan Provincial(Number:202301AU070137).
文摘Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a species within the genus Akebia Decne.,is valued for its use in food,traditionalmedicine,oil production,and as an ornamental plant.Curcumin,widely recognized for its pharmacological properties including anti-cancer,anti-neuroinflammatory,and anti-fibrotic effects,has recently drawn interest for its potential roles in plant stress responses.However,its impact on plant tolerance to saline-alkali stress remains poorly understood.In this study,the effects of curcumin on saline-alkali resistance in A.trifoliata were examined by subjecting plants to a saline-alkali solution containing 150 mmol/L sodium ions(a mixture of Na_(2)SO_(4),Na_(2)CO_(3),and NaHCO_(3)).Curcumin treatment under these stress conditions leads to anatomical improvements in leaf structure.Furthermore,A.trifoliatamaintained a favorable Na^(+)/K^(+)ratio through increased potassium uptake and reduced sodium accumulation.Biochemical analysis revealed elevated levels of proline,soluble sugars,and soluble proteins,along with improved activities of antioxidant enzymes such as superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD).Similarly,the concentrations of hydrogen peroxide(H_(2)O_(2))and malondialdehyde(MDA)were significantly reduced.Transcriptome analysis under saline-alkali stress conditions showed that curcumin influenced seven keymetabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,with differentially expressed unigenes primarily enriched in transcription factor families such as MYB,AP2/ERF,NAC,bHLH,and C2C2.Moreover,eight differentially expressed genes(DEGs)associated with plant hormone signal transduction were linked to the auxin and brassinosteroid pathways,critical for cell elongation and plant growth.These findings indicate that curcumin increases saline-alkali stress tolerance in A.trifoliata by modulating physiological,biochemical,and transcriptional responses,ultimately supporting improved growth under adverse conditions.
基金Science and Technology on Electro-Optic Control Laboratory and the Fund of Aeronautical Science(No.201951048001)。
文摘The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from an object point.However,a non-parametric model requires a sophisticated calculation process or high-cost devices to obtain a massive quantity of parameters.These disadvantages limit the application of camera models.Therefore,we propose a novel camera model calibration method based on a single-axis rotational target.The rotational vision target offers 3D control points with no need for detailed information of poses of the rotational target.Radial basis function(RBF)network is introduced to map 3D coordinates to 2D image coordinates.We subsequently derive the optimization formulization of imaging model parameters and compute the parameter from the given control points.The model is extended to adapt the stereo camera that is widely used in vision measurement.Experiments have been done to evaluate the performance of the proposed camera calibration method.The results show that the proposed method has superiority in accuracy and effectiveness in comparison with the traditional methods.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金Fundan- Switzerland Reinsurance Fund and the National NaturalScience Foundation of China(1 0 1 71 0 79)
文摘By using the non parametric least square method, the strong consistent estimations of distribution function and failure function are established,where the distribution function F(x) after logist transformation is assumed to be approximated by a polynomial.The performance of simulation shows that the estimations are highly satisfactory.
基金supported by the National Natural Science Foundation of China(No.62103449)the Start-up Research Fund of Southeast University(RF1028623007)the Zhishan Youth Scholar Support Program of Southeast University(2242023R40044).
文摘Oxygen uptake plays a crucial role in the evaluation of endurance performance during exercise and is extensively utilized for metabolic assessment. This study records the oxygen uptake during the exercise phase (i.e., ascending or descending) of the stair exercise, utilizing an experimental dataset that includes ten participants and covers various exercise periods. Based on the designed experiment protocol, a non-parametric modeling method with kernel-based regularization is generally applied to estimate the oxygen uptake changes during the switching stairs exercise, which closely resembles daily life activities. The modeling results indicate the effectiveness of the non-parametric modeling approach when compared to fixed-order models in terms of accuracy, stability, and compatibility. The influence of exercise duration on estimated fitness reveals that the model of the phase-oxygen uptake system is not time-invariant related to respiratory metabolism regulation and muscle fatigue. Consequently, it allows us to study the humans’ conversion mechanism at different metabolic rates and facilitates the standardization and development of exercise prescriptions.
基金supported by the National Polytechnic Institute(SIP-20221151,SIP-20220916)。
文摘This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
基金supported by the National Science Foundation(No.CNS-1239509)the National Key Basic Research Program of China(973 program)(No.2014CB845301)+1 种基金the National Natural Science Foundation of China(Nos.61104052,61273193,61227902,61134013)the Australian Research Council(No.DP120104986)
文摘The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.
文摘A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations from 1986 to 2016 inside and outside Ninh Thuan province. To do the research, the author uses a non-parametric analysis method and the drought index calculation method. Specifically, with the non-parametric method, the author uses the analysis, Mann-Kendall (MK) and Theil-Sen (Sen’s slope), and to analyze drought, the author uses the Standardized Precipitation Index (SPI) and the Moisture Index (MI). Two Softwares calculated in this study are ProUCL 5.1 and MAKENSEN 1.0 by the US Environmental Protection Agency and Finnish Meteorological Institute. The calculation results show that meteorological drought will decrease in the future with areas such as Phan Rang, Song Pha, Quan The, Ba Thap tend to increase very clearly, while Tam My and Nhi Ha tend to increase very clearly short. With the agricultural drought, the average MI results increased 0.013 per year, of which Song Pha station tended to increase the highest with 0.03 per year and lower with Nhi Ha with 0.001 per year. The forecast results also show that by the end of the 21st century, the SPI tends to decrease with SPI 1 being <span style="white-space:nowrap;">−</span>0.68, SPI 3 being <span style="white-space:nowrap;">−</span>0.40, SPI 6 being <span style="white-space:nowrap;">−</span>0.25, SPI 12 is 0.42. Along with that is the forecast that the MI index will increase 0.013 per year to 2035, the MI index is 0.93, in 2050 it is 1.13, in 2075 it will be 1.46, and by 2100 it is 1.79. Research results will be used in policymaking, environmental resources management agencies, and researchers to develop and study solutions to adapt and mitigate drought in the context of variable climate change.
文摘The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determining whether there is any change in the biomarker of the patient. It is important to study how the biomarker changes due to treatment and whether for different individuals located in separate centers can be clustered together since they might have different distributions. The study is motivated by a Bayesian non-parametric mixture model, which is more flexible when compared to the Bayesian Parametric models and is capable of borrowing information across different centers allowing them to be grouped together. To this end, this research modeled Biological markers taking into consideration the Surrogate markers. The study employed the nested Dirichlet process prior, which is easily peaceable on different distributions for several centers, with centers from the same Dirichlet process component clustered automatically together. The study sampled from the posterior by use of Markov chain Monte carol algorithm. The model is illustrated using a simulation study to see how it performs on simulated data. Clearly, from the simulation study it was clear that, the model was capable of clustering data into different clusters.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.