期刊文献+
共找到9,665篇文章
< 1 2 250 >
每页显示 20 50 100
Direct and Inverse Problems for a Third-order Differential Operator with Anti-periodic Boundary Conditions and a Non-local Potential
1
作者 ZHANG Mingming LIU Yixuan 《数学理论与应用》 2025年第1期62-80,共19页
This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the chara... This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra. 展开更多
关键词 Direct problem Inverse problem non-local potential Anti-periodic boundary condition
在线阅读 下载PDF
Large system study of chalcopyrite and pyrite flotation surfaces based on SCC-DFTB parameterization method
2
作者 Jianhua Chen Yibing Zhang 《International Journal of Mining Science and Technology》 2025年第7期1037-1055,共19页
In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their ... In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems. 展开更多
关键词 SCC-DFTB parameterization CHALCOPYRITE PYRITE Flotation surface Large-scale system
在线阅读 下载PDF
Physically Constrained Adaptive Deep Learning for Ocean Vertical-Mixing Parameterization
3
作者 Junjie FANG Xiaojie LI +4 位作者 Jin LI Zhanao HUANG Yongqiang YU Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期165-177,共13页
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res... Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results. 展开更多
关键词 deep learning vertical-mixing parameterization ocean sciences adaptive network
在线阅读 下载PDF
MS-GAN:3D deep generative model for multispecies propeller parameterization and generation
4
作者 Chenyu WANG Bo CHEN +2 位作者 Haiyang FU Yitong FAN Weipeng LI 《Chinese Journal of Aeronautics》 2025年第6期382-395,共14页
In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In t... In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN. 展开更多
关键词 PROPELLERS Dimensionality reduction parameterize Artificial intelligence Generative design
原文传递
Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging
5
作者 Jun-Jie Zhao Shan-Mu Jin +2 位作者 Yue-Kun Wang Yu Wang Ya-Hui Peng 《Chinese Physics B》 2025年第8期606-621,共16页
Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy... Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy procedures.Adaptive waveform inversion(AWI),a variant of full waveform inversion(FWI),has shown potential in intracranial ultrasound imaging.However,the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios.Conventional AWI struggles to produce accurate images in these cases,limiting its application in critical medical settings.To address these issues,we propose a stabilized adaptive waveform inversion(SAWI)method,which introduces a user-defined zero-lag position for theWiener filter.Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails,perform successful transcranial imaging in configurations where AWI cannot,and maintain the same imaging accuracy as AWI.The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs,which helps to promote the application of AWI in medical fields,particularly in transcranial scenarios. 展开更多
关键词 ultrasound brain imaging full waveform inversion ROBUSTNESS parameterization
原文传递
Cloud Droplet Spectrum Evolution Driven by Aerosol Activation and Vapor Condensation:A Comparative Study of Different Bulk Parameterization Schemes
6
作者 Jun ZHANG Jiming SUN +2 位作者 Yu KONG Wei DENG Wenhao HU 《Advances in Atmospheric Sciences》 2025年第7期1316-1332,共17页
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we... Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth. 展开更多
关键词 cloud microphysical parameterization cloud droplet spectrum aerosol activation cloud droplet condensation
在线阅读 下载PDF
Towards a physics-constrained and interpretable datadriven parameterization scheme for mesoscale eddies in ocean modeling
7
作者 Guosong Wang Shuai Song +5 位作者 Min Hou Xinrong Wu Xidong Wang Yaming Zhao Song Pan Zhigang Gao 《Acta Oceanologica Sinica》 2025年第7期15-32,共18页
Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving mod... Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving model predictions.In this study,we propose a convolutional neural network(CNN)that combines data-driven techniques with physical principles to develop a robust and interpretable parameterization scheme for mesoscale eddies in ocean modeling.We use a highresolution reanalysis dataset to extract subgrid eddy momentum and then applying machine learning algorithms to identify patterns and correlations.To ensure physical consistency,we have introduced conservation of momentum constraints in our CNN parameterization scheme through soft and hard constraints.The interpretability analysis illustrate that the pre-trained CNN parameterization shows promising results in accurately solving the resolved mean velocity and effectively capturing the representation of unresolved subgrid turbulence processes.Furthermore,to validate the CNN parameterization scheme offline,we conduct simulations using the Massachusetts Institute of Technology general circulation model(MITgcm)ocean model.A series of experiments is conducted to compare the performance of the model with the CNN parameterization scheme and high-resolution simulations.The offline validation demonstrates the effectiveness of the CNN parameterization scheme in improving the representation of mesoscale eddies in the MITgcm ocean model.Incorporating the CNN parameterization scheme leads to better agreement with high-resolution simulations and a more accurate representation of the kinetic energy spectra. 展开更多
关键词 subgrid parameterization ocean mesoscale eddies physics-informed deep learning kinetic energy backscatter numerical simulation
在线阅读 下载PDF
Parameterization of turbulent mixing by deep learning in the continental shelf sea east of Hainan Island
8
作者 Minghao HU Lingling XIE +1 位作者 Mingming LI Quanan ZHENG 《Journal of Oceanology and Limnology》 2025年第3期657-675,共19页
The uncertainty of ocean turbulent mixing parameterization comprises a significant challenge in ocean and climate models. A depth-dependent deep learning ocean turbulent mixing parameterization scheme was proposed wit... The uncertainty of ocean turbulent mixing parameterization comprises a significant challenge in ocean and climate models. A depth-dependent deep learning ocean turbulent mixing parameterization scheme was proposed with the hydrological and microstructure observations conducted in summer 2012 in the shelf sea east of Hainan Island, in South China Sea(SCS). The deep neural network model is used and incorporates the Richardson number Ri, the normalized depth D, the horizontal velocity speed U, the shear S^(2), the stratification N^(2), and the density ρ as input parameters. Comparing to the scheme without parameter D and region division, the depth-dependent scheme improves the prediction of the turbulent kinetic energy dissipation rate ε. The correlation coefficient(r) between predicted and observed lgε increases from 0.49 to 0.62, and the root mean square error decreases from 0.56 to 0.48. Comparing to the traditional physics-driven parameterization schemes, such as the G89 and MG03, the data-driven approach achieves higher accuracy and generalization. The SHapley Additive Explanations(SHAP) framework analysis reveals the importance descending order of the input parameters as: ρ, D, U, N^(2), S^(2), and Ri in the whole depth, while D is most important in the upper and bottom boundary layers(D≤0.3&D≥0.65) and least important in middle layer(0.3<D<0.65). The research shows applicability of constructing deep learning-based ocean turbulent mixing parameterization schemes using limited observational data and well-established physical processes. 展开更多
关键词 ocean turbulent mixing parameterization continental shelf sea deep learning SHapley Additive Explanations(SHAP)
在线阅读 下载PDF
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
9
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Improved Simulation of Tropical Cyclone Soudelor(2015)Using a Modified Three-Dimensional Turbulence Parameterization
10
作者 Gengjiao YE Xu ZHANG +3 位作者 Shanghong WANG Hui YU Xuesong ZHU Mengjuan LIU 《Advances in Atmospheric Sciences》 2025年第7期1407-1422,共16页
A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc... A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process. 展开更多
关键词 tropical cyclone turbulence parameterization numerical simulation tropical cyclone intensity tropical cyclone structure tropical cyclone spin-up process
在线阅读 下载PDF
Implication of community-level ecophysiological parameterization to modelling ecosystem productivity:a case study across nine contrasting forest sites in eastern China 被引量:2
11
作者 Minzhe Fang Changjin Cheng +2 位作者 Nianpeng He Guoxin Si Osbert Jianxin Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期1-11,共11页
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations... Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods. 展开更多
关键词 BIOME-BGC Community traits Forest Ecosystems Model parameterization
在线阅读 下载PDF
Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas
12
作者 石中兵 方凯锐 +14 位作者 李景春 邹晓岚 卢兆旸 闻杰 王占辉 丁玄同 陈伟 杨曾辰 蒋敏 季小全 佟瑞海 李永高 施陪万 钟武律 许敏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期413-420,共8页
The dynamics of long-wavelength(kθ<1.4 cm^(-1)),broadband(20 kHz–200 kHz)electron temperature fluctuations(Te/Te)of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak.In a relatively... The dynamics of long-wavelength(kθ<1.4 cm^(-1)),broadband(20 kHz–200 kHz)electron temperature fluctuations(Te/Te)of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak.In a relatively low density(ne(0)■0.91×10^(19)m^(-3)–1.20×10^(19)m^(-3))scenario,after gas-puffing the core temperature increases and the edge temperature drops.On the contrary,temperature fluctuation drops at the core and increases at the edge.Analyses show the non-local emergence is accompanied with a long radial coherent length of turbulent fluctuations.While in a higher density(ne(0)?1.83×10^(19)m^(-3)–2.02×10^(19)m^(-3))scenario,the phenomena are not observed.Furthermore,compelling evidence indicates that E×B shear serves as a substantial contributor to this extensive radial interaction.This finding offers a direct explanatory link to the intriguing core-heating phenomenon witnessed within the realm of non-local transport. 展开更多
关键词 nuclear fusion non-local transport TOKAMAK gas-puffing
原文传递
Thermodynamic geometry of the RN-Ad S black hole and non-local observables
13
作者 Chao Wang Bin Wu +1 位作者 Zhen-Ming Xu Wen-Li Yang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第2期137-144,共8页
This paper studies the thermodynamic geometry of the Reissner–Nordstr?m-anti-de Sitter(RN-AdS)black hole via detection of the non-local observables in the dual field theory,including the entanglement entropy and equa... This paper studies the thermodynamic geometry of the Reissner–Nordstr?m-anti-de Sitter(RN-AdS)black hole via detection of the non-local observables in the dual field theory,including the entanglement entropy and equal-time two-point correlation function.With the dimensional analysis,we construct the principle of corresponding states of black hole thermodynamics.As a result,our findings can be applied to black holes with different Ad S backgrounds.In this sense,the probe of the thermodynamic geometry of the RN-Ad S black hole though the non-local observables in dual field theory has been confirmed numerically. 展开更多
关键词 black hole thermodynamic thermodynamic geometry phase transition non-local observables
原文传递
Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme
14
作者 Fangrui Xiu Zengan Deng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期121-132,共12页
The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kineti... The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes. 展开更多
关键词 Langmuir turbulence physical-informed neural network parameter inference
在线阅读 下载PDF
Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval
15
作者 Tianyu Zhang Mohammed Shokr +5 位作者 Zhida Zhang Fengming Hui Xiao Cheng Zhilun Zhang Jiechen Zhao Chunlei Mi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期93-111,共19页
Retrieval of Thin-Ice Thickness(TIT)using thermodynamic modeling is sensitive to the parameterization of the independent variables(coded in the model)and the uncertainty of the measured input variables.This article ex... Retrieval of Thin-Ice Thickness(TIT)using thermodynamic modeling is sensitive to the parameterization of the independent variables(coded in the model)and the uncertainty of the measured input variables.This article examines the deviation of the classical model’s TIT output when using different parameterization schemes and the sensitivity of the output to the ice thickness.Moreover,it estimates the uncertainty of the output in response to the uncertainties of the input variables.The parameterized independent variables include atmospheric longwave emissivity,air density,specific heat of air,latent heat of ice,conductivity of ice,snow depth,and snow conductivity.Measured input parameters include air temperature,ice surface temperature,and wind speed.Among the independent variables,the results show that the highest deviation is caused by adjusting the parameterization of snow conductivity and depth,followed ice conductivity.The sensitivity of the output TIT to ice thickness is highest when using parameterization of ice conductivity,atmospheric emissivity,and snow conductivity and depth.The retrieved TIT obtained using each parameterization scheme is validated using in situ measurements and satellite-retrieved data.From in situ measurements,the uncertainties of the measured air temperature and surface temperature are found to be high.The resulting uncertainties of TIT are evaluated using perturbations of the input data selected based on the probability distribution of the measurement error.The results show that the overall uncertainty of TIT to air temperature,surface temperature,and wind speed uncertainty is around 0.09 m,0.049 m,and−0.005 m,respectively. 展开更多
关键词 Arctic sea ice 1-D thermodynamic ice model thin-ice thickness sea ice parameterization
在线阅读 下载PDF
A New Result on Regular Designs under Baseline Parameterization
16
作者 Mengru Qin Yuna Zhao 《Open Journal of Applied Sciences》 2024年第2期441-449,共9页
The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship bet... The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship between K-aberration and word length pattern is developed. 展开更多
关键词 Baseline parameterization K-Aberration Regular Design Word Length Pattern
在线阅读 下载PDF
Fresnel Equations Derived Using a Non-Local Hidden-Variable Particle Theory
17
作者 Dirk J. Pons 《Journal of Modern Physics》 2024年第6期950-984,共35页
Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel... Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory. 展开更多
关键词 Wave-Particle Duality Optical Law Fresnel Equation non-local Hidden-Variable
在线阅读 下载PDF
Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing
18
作者 Haolan Ren Fei Zheng +1 位作者 Tingwei Cao Qiang Wang 《Atmospheric and Oceanic Science Letters》 2025年第1期39-45,共7页
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c... Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale. 展开更多
关键词 Recovery of AMOC 4×CO_(2) forcing Key parameter parameter estimation Data assimilation Machine learning
在线阅读 下载PDF
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
19
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear Loading parameter Constant normal stiffness(CNS)
在线阅读 下载PDF
An identification model for weak influence parameters of nuclear power unit based on parameter recursion
20
作者 LIANG Qian-Yun XU Xin 《四川大学学报(自然科学版)》 北大核心 2025年第4期986-991,共6页
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the... In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator. 展开更多
关键词 Steam generator Nuclear power parameter identification Multi-layer perceptron
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部