Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM t...Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.展开更多
This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial...This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.展开更多
Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force an...Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.展开更多
Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkl...Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.展开更多
Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resour...Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.展开更多
In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow bas...In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for coll...The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.展开更多
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ...When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.展开更多
To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum...To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.展开更多
This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids...This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.展开更多
Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intole...Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.展开更多
In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produce...In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm t...The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.展开更多
Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pre...Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pressure differential and permeability.Coupled with the viscosity-concentration relationship of the HFAD agent,a non-linear seepage model of HFAD was established,taking into account the adsorption effect of high pressure drops,and the influencing factors were analyzed.The findings indicate that the replenishment of formation energy associated with HFAD technology is predominantly influenced by matrix permeability,fracture length and the initial concentration of the HFAD agent.The effect of replenishment of formation energy is positively correlated with matrix permeability and fracture length,and negatively correlated with the initial concentration of the HFAD agent.The initial concentration and injection amount of the high-pressure HFAD agent can enhance the concentration of the HFAD agent in the matrix and improve the efficiency of oil washing.However,a longer fracture is not conducive to maintaining the high concentration of the HFAD agent in the matrix.Furthermore,the fracture length and pump displacement are the direct factors affecting the fluid flow velocity in the matrix subsequent to HFAD.These factors can be utilized to control the location of the displacement phase front,and thus affect the swept area of HFAD.A reasonable selection of the aforementioned parameters can effectively supplement the formation energy,expand the swept volume of the HFAD agent,improve the recovery efficiency of HFAD,and reduce the development cost.展开更多
Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coeffici...Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.展开更多
The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measuremen...The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.展开更多
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
基金financially supported by the 2022 MTC Young Individual Research Grants under Singapore Research,Innovation and Enterprise(RIE)2025 Plan(No.M22K3c0097)the Natural Science Foundation of US(No.DMR-2104933)the sponsorship of the China Scholarship Council(No.202106130051)。
文摘Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.
文摘This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.
基金Supported by National Natural Science Foundation of China(Grant No.11872033)Beijing Municipal Natural Science Foundation(Grant No.3172017)。
文摘Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.
基金This work was supported by the Youth Project of Hunan Provincial Department of Education(Grant No.22B0334)the Bridge and Tunnel Engineering Innovation Project of Changsha University of Science&Technology(Grant No.11ZDXK11)and the Practical Innovation and Entrepreneurship Capacity Improvement Plan of Changsha University of Science and Technology(Grant No.CLSJCX23029).
文摘Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.
基金the National Natural Science Foundation of China(No.61871133)the Natural Science Foundation of Fujian Province(No.2021J01587)。
文摘Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.
文摘In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
文摘The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.
基金supported by the New Century Excellent Talents in University(NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(2012ZX04014-031)+1 种基金the Natural Science Foundation of Hubei Province(2011CDB279)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)
文摘When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201701D221017,201901D211242)。
文摘To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.
文摘This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.
文摘In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金partial financial support from Gazpromneft Science and Technology Center。
文摘The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.
基金Supported by the National Nature Science Foundation of China(52374035,52074087)Postdoctoral Natural Science Foundation of China(2021M690528)。
文摘Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pressure differential and permeability.Coupled with the viscosity-concentration relationship of the HFAD agent,a non-linear seepage model of HFAD was established,taking into account the adsorption effect of high pressure drops,and the influencing factors were analyzed.The findings indicate that the replenishment of formation energy associated with HFAD technology is predominantly influenced by matrix permeability,fracture length and the initial concentration of the HFAD agent.The effect of replenishment of formation energy is positively correlated with matrix permeability and fracture length,and negatively correlated with the initial concentration of the HFAD agent.The initial concentration and injection amount of the high-pressure HFAD agent can enhance the concentration of the HFAD agent in the matrix and improve the efficiency of oil washing.However,a longer fracture is not conducive to maintaining the high concentration of the HFAD agent in the matrix.Furthermore,the fracture length and pump displacement are the direct factors affecting the fluid flow velocity in the matrix subsequent to HFAD.These factors can be utilized to control the location of the displacement phase front,and thus affect the swept area of HFAD.A reasonable selection of the aforementioned parameters can effectively supplement the formation energy,expand the swept volume of the HFAD agent,improve the recovery efficiency of HFAD,and reduce the development cost.
基金This paper is supported by China Petrochemical Key Project in the"11th Five-Year"Plan Technology and the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.
基金Project(2014GK2013)supported by the Science and Technology Program of Hunan Province,China
文摘The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.