Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less t...Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less transmitted data that carry the same amount of information. NC research work over the physical layer and the upper layers are popular and needed to be more investigated. In this paper, we propose a practical system of large-number of connected multi-source network coding (LMSNC), at the physical layer that exploits the broadcast nature of the wireless channel, using the practical and bandwidth-efficient schemes decode-and-forward (DF) and then compare it with Amplify and Forward (AF). The theoretical analysis and the simulation results show the effect of the noise when it cumulates in AF system and how DF is solving this severe default. Moreover, we consider the MSNC for Small-number of connected sources (SMSNC) and the two-way communication setup where two users exchange their information over an intermediate network node (ideally called Base Station), as two reference cases to compare with. With SMSNC, the number of necessary downlink transmissions from the intermediate node to the users is reduced, and thus the throughput is increased. Simulation results obtained using high-performance non-binary turbo codes, based on Partial Unit Memory (PUM) codes (4, 2, 1, 4) and (8, 4, 3, 8);confirm that combining PUM Turbo Code (PUMTC) and NC in the proposed MSNC setup gives almost the same BER performance as that for SMSNC at the small number of processing steps mainly when PUMTC (8, 4, 3, 8) is performed, which is required to retrieve the received coded messages. In the scenario of AF, combining packets results to cumulate the noise, which justifies the reason we decided to increase the number of transmitted coded messages in the network, i.e., the BER performance improves when sending extra coded messages. Finally, the possibility for a trade-off among BER, data rate and the number of transmitted coded messages is shown for LMSNC through graphics and simulation results.展开更多
It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundan...It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability. Under this criterion, an maximum distance separable(MDS) code has optimal redundancy. In this paper, we address a new class of MDS array codes for tolerating triple node failures by extending the row di- agonal parity(RDP) code, named the RDDP(row double diagonal parity) code. The RDDP code takes advantages of good perform- ances of the RDP code with balanced I/0. A specific triple-erasure decoding algorithm to reduce decoding complexity is depicted by geometric graph, and it is easily implemented by software and hardware. The theoretical analysis shows that the comprehensive properties of the RDDP code are optimal, such as encoding and decoding efficiency, update efficiency and I/0 balance performance.展开更多
The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( F...The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.展开更多
文摘Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less transmitted data that carry the same amount of information. NC research work over the physical layer and the upper layers are popular and needed to be more investigated. In this paper, we propose a practical system of large-number of connected multi-source network coding (LMSNC), at the physical layer that exploits the broadcast nature of the wireless channel, using the practical and bandwidth-efficient schemes decode-and-forward (DF) and then compare it with Amplify and Forward (AF). The theoretical analysis and the simulation results show the effect of the noise when it cumulates in AF system and how DF is solving this severe default. Moreover, we consider the MSNC for Small-number of connected sources (SMSNC) and the two-way communication setup where two users exchange their information over an intermediate network node (ideally called Base Station), as two reference cases to compare with. With SMSNC, the number of necessary downlink transmissions from the intermediate node to the users is reduced, and thus the throughput is increased. Simulation results obtained using high-performance non-binary turbo codes, based on Partial Unit Memory (PUM) codes (4, 2, 1, 4) and (8, 4, 3, 8);confirm that combining PUM Turbo Code (PUMTC) and NC in the proposed MSNC setup gives almost the same BER performance as that for SMSNC at the small number of processing steps mainly when PUMTC (8, 4, 3, 8) is performed, which is required to retrieve the received coded messages. In the scenario of AF, combining packets results to cumulate the noise, which justifies the reason we decided to increase the number of transmitted coded messages in the network, i.e., the BER performance improves when sending extra coded messages. Finally, the possibility for a trade-off among BER, data rate and the number of transmitted coded messages is shown for LMSNC through graphics and simulation results.
基金Supported by the National Natural Science Foundation of China(60873216)the Key Project of Sichuan Provincial Department of Education(12ZA223)
文摘It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability. Under this criterion, an maximum distance separable(MDS) code has optimal redundancy. In this paper, we address a new class of MDS array codes for tolerating triple node failures by extending the row di- agonal parity(RDP) code, named the RDDP(row double diagonal parity) code. The RDDP code takes advantages of good perform- ances of the RDP code with balanced I/0. A specific triple-erasure decoding algorithm to reduce decoding complexity is depicted by geometric graph, and it is easily implemented by software and hardware. The theoretical analysis shows that the comprehensive properties of the RDDP code are optimal, such as encoding and decoding efficiency, update efficiency and I/0 balance performance.
基金Supported by the National Natural Science Foundation of China(No.61271230,61472190)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment,China Research Institute of Radiowave Propagation(No.201500013)
文摘The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.