期刊文献+
共找到4,266篇文章
< 1 2 214 >
每页显示 20 50 100
Denitrogenization from Liquid Steel by Fluxes Treatment
1
作者 Wenzhuo Guo Shantong Jin Xinhua Wang Jun Shu Metallurgy School, UST Beijing, Beijing 100083, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第2期80-83,共4页
By measuring the solubility of nitrogen in BaO-contained and TiO_2-contained fluxes at 1623K, the nitride capacity and nitrogen distribution ratio were calculated. Both fluxes had high nitride capacity and nitrogen di... By measuring the solubility of nitrogen in BaO-contained and TiO_2-contained fluxes at 1623K, the nitride capacity and nitrogen distribution ratio were calculated. Both fluxes had high nitride capacity and nitrogen distribution ratio. The results indicated that Both fluxes treatment were available for denitrogenizing steel. The kinetic studies about denitrogenization showed that nitrogen transfer in liquid steel is the controlled step of denitrogenization reaction, so to improve the mass transfer condition in liquid steel could accelerate the rate of denitrogenization. Under proper test conditions, it was proved to be possible to remove nitrogen over 70 percent from steel with TiO_2 contained fluxes. 展开更多
关键词 denitrogenization FLUX nitfide capacity nitrogen distribution ratio
在线阅读 下载PDF
Root nodule-assisted activation for the preparation of micropore-graded porous carbon for VOC adsorption
2
作者 Longfei Xie Liwen Lu +7 位作者 Shiyi Wang Xiaojing Sun Yujing Ji Yuqing Chen Weixiao Peng Miao Yu Haomin Huang Daiqi Ye 《Journal of Environmental Sciences》 2026年第1期210-220,共11页
In order to address the evolving emission characteristics of oxygenated volatile organic compounds(OVOCs),it is essential to develop adsorbent materials specifically designed for the efficient adsorption of OVOCs with... In order to address the evolving emission characteristics of oxygenated volatile organic compounds(OVOCs),it is essential to develop adsorbent materials specifically designed for the efficient adsorption of OVOCs with large kinetic diameters.In this study,we used co-pyrolysis to prepare a series of graded porous carbon materials with well-developed micropores by adjusting the doping ratios of root nodules and pretreated cellulose.The material with root nodule to cellulose mass ratio of 1:1(TCC-RN-1)exhibited the highest saturated adsorption capacity for butyl acetate(834 mg/g).This can be attributed to enhanced pore size distribution from nodule doping,which facilitates the development of a micropore-graded structure.Additionally,the nodules acted as auxiliary activating agents that enhanced the KOH micropore regulation effect during the activation stage,resulting in the highest micropore volume(0.863 cm^(3)/g).The doping of root nodules facilitated the formation of additional defects on the surface of the porous carbon material,leading to a more disordered arrangement that improved pollutant adsorption.Furthermore,TCC-RN-1 demonstrated good thermal stability in an air atmosphere,main-taining a butyl acetate adsorption capacity exceeding 95%after five adsorption-desorption cycles.This indicates its favorable potential for industrial applications. 展开更多
关键词 Root nodules Butyl acetate adsorption CO-PYROLYSIS Nitrogen transformation Micropore-graded
原文传递
Chemical characteristics of fine aerosols and associated speciated organic compounds in summer Nanjing,China
3
作者 Yuanjie Shan Daoming Li +7 位作者 Shijie Cui Jiukun Xian Yunjiang Zhang Junfeng Wang Haiwei Li Ming Wang Yun Wu Xinlei Ge 《Journal of Environmental Sciences》 2026年第1期349-361,共13页
Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few importa... Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few important groups of organics including organic nitrogen(ON),organonitrates(OrgN),organosulfates(OS)and polycyclic aromatic hydrocarbons(PAHs),via online measurement of submicron aerosols(PM_(1))in Nanjing,China,during 2022 summer.The average PM_(1) concentration was 15.39μg/m^(3),dominated by secondary components(69.1%),which were even more important at higher PM_(1) levels.The primary organic aerosols(POA)were from traffic,industry and cooking;the two secondary OA factors were both closely linked with photochemistry,with one(OOA1)being relatively fresh and important in early afternoon and another(OOA2)being aged and important in late afternoon.Sulfate formation was also governed by photochemistry but resembled that of OOA2 not OOA1;nitrate formation was associated strongly with heterogeneous hydrolysis and thermodynamic equilibrium.Results also reveal a possible photochemical reaction channel from POA to OOA1,then to OOA2.Case studies show that formations of secondary components responded differently to different weather conditions and governed summer PM_(1) pollution.The average ON,OrgN,OS and PAHs concentrations were determined to be 122.8,84.4,45.6 and 3.3 ng/m^(3),respectively.ON was dominated by primary sources(53.8%).OrgN varied similarly to nitrate.OS formation was linked with aqueous-phase reactions,which were insignificant therefore its level was low.PAHs was mainly from traffic,and photochemical oxidation might be its important sink during afternoon. 展开更多
关键词 Secondary organic aerosol Organic nitrogen Organonitrate Organosulfate Polycyclic aromatic hydrocarbons
原文传递
Effects of nighttime warming and nitrogen addition on phytoplankton biomass in a submerged macrophytes-dominated freshwater wetland
4
作者 Yaru Lyu Jiayin Feng +9 位作者 Wenjing Ma Chao Wang Mengyu Yan Zixuan Yang Yunpeng Guo Jinhua Zhang Hongpeng Wang Jingyi Ru Xueli Qiu Shiqiang Wan 《Journal of Environmental Sciences》 2026年第1期721-730,共10页
Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wet... Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wetlands with large carbon stocks and complex hydrological fluctuations remain largely unclear.As part of a two-year field experiment in a freshwater wetland,this study was conducted to investigate the effects of nighttime warming and N addition on phytoplankton biomass in the North China Plain.The results showed that neither nighttime warming nor N addition influenced the Shannon-Wiener index of phytoplankton community.Nighttime warming did not change phytoplankton biomass,likely due to the different warming impacts on dominant phyla and in different seasons.Decreased phytoplankton biomass in spring because of the increased water pH and submerged plant coverage was compensated by the enhanced biomass in autumn due to the reduced dissolved oxygen and submerged plant coverage,leading to the neutral change of phytoplankton biomass under warming.Nitrogen addition elevated phytoplankton biomass by 11.6%,which could be attributed to the enhanced nutrient availability and reduced submerged plant coverage.Positive relationships of methane(CH4)emission rates at the water-air interface with phytoplankton biomass indicated the potentially crucial role of phytoplankton in mediating wetland CH4 cycling through photosynthesis-driven metabolisms.The findings suggested the seasonal variation of phytoplankton and their potential responses to nighttime warming and N deposition,which may provide a more accurate basis for assessing the global change-carbon feedback in wetland ecosystems. 展开更多
关键词 Climate warming Nitrogen deposition Phytoplankton community Freshwater lake Seasonal variation
原文传递
Advancing Energy Development with MBene: Chemical Mechanism, AI, and Applications in Energy Storage and Harvesting
5
作者 Jai Kumar Nadeem Hussain Solangi +5 位作者 Rana R.Neiber Fangyuan Bai Victor Charles Pengfei Zhai Zhuanpei Wang Xiaowei Yang 《Nano-Micro Letters》 2026年第3期569-629,共61页
MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due... MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity,structural flexibility,and mechanical properties.This comprehensive review describes the sandwich-like structure of the synthesized MBene,derived from its multilayered parent material and its distinct chemical framework to date.The fields of focus encompass the investigation of novel MBenes,the study of phase-changing mechanisms,and the examination of hex-MBenes,ortho-MBenes,tetra-MBenes,tri-MBenes,and MXenes with identical transition metal components.A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage(Li/Na/Mg/Ca/Li–S batteries and supercapacitors),as well as conversion and harvesting(CO_(2) reduction,and nitrogen reduction reactions).The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes.This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting. 展开更多
关键词 MBene MXene Energy storage CO_(2)reduction Nitrogen reduction reactions Artificial intelligence
在线阅读 下载PDF
Nitrogen and oxygen isotopes in nitrate and nitrite in the polluted surface waters from the Arno River Basin(Central Italy)
6
作者 Lorenzo Chemeri Barbara Nisi +5 位作者 Andrea Pierozzi Jacopo Cabassi Marco Taussi Stefania Venturi Antonio Delgado Huertas Orlando Vaselli 《Journal of Environmental Sciences》 2026年第1期250-262,共13页
The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the A... The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s. 展开更多
关键词 River geochemistry Water pollution Nitrogen stable isotopes Surface water management Water quality Anthropogenic pollution
原文传递
Impacts of trace ofloxacin on autotrophic denitrification process driven by pyrite/sulfur:Performance,microbial community evolution and metagenomic analysis
7
作者 Wenyu Yang Xin Xin Xishuang Cao 《Journal of Environmental Sciences》 2026年第1期775-784,共10页
In this work,ofloxacin(OFL),a kind of frequently detected antibiotic in groundwater,was selected to explore its impact(at ng/L-μg/L-level)on denitrification performance in an autotrophic denitrification system driven... In this work,ofloxacin(OFL),a kind of frequently detected antibiotic in groundwater,was selected to explore its impact(at ng/L-μg/L-level)on denitrification performance in an autotrophic denitrification system driven by pyrite/sulfur(FeS2/S0).Results showed that OFL restrained nitrate removal efficiency,and the inhibition degree was positively related to the concentration of OFL.After being exposed to increased OFL(200 ng/L-100μg/L)for 69 days,higher inhibition of electron transport activity(ETSA),enzyme activities of nitrate reductase(NAR),and nitrite reductase(NIR)were acquired.Meanwhile,the extracellular protein(PN)content of sludge samples was remarkably stimulated by OFL to resist the augmented toxicity.OFL contributed to increased microbial diversity and sulfur/sulfide oxidation functional genes in ng/L-level bioreactors,whereas led to a decline inμg/L level experiments.With OFL at concentrations of 200 ng/L and 100μg/L,the whole expression of 10 key denitrification functional genes was depressed,and the higher the OFL concentration,the lower the expression level.However,no significant proliferation of antibiotic resistance genes(ARGs)either in 200 ng/L-OFL or 100μg/L-OFL groups was observed.Two-factor correlation analysis results indicated that Thiobacillus,Anaerolineae,Anaerolineales,and Nitrospirae might be the main hosts of existing ARGs in this system. 展开更多
关键词 Autotrophic denitrification Ofloxacin antibiotics Microbial community Metabolism of nitrogen/sulfur Antibiotic resistance genes
原文传递
Role of nitric oxide in cerebral ischemia/reperfusion injury:A biomolecular overview 被引量:1
8
作者 Roberto Anaya-Prado Abraham I Canseco-Villegas +14 位作者 Roberto Anaya-Fernández Michelle Marie Anaya-Fernandez Miguel A Guerrero-Palomera Citlalli Guerrero-Palomera Ivan F Garcia-Ramirez Daniel Gonzalez-Martinez Consuelo Cecilia Azcona-Ramírez Claudia Garcia-Perez Airim L Lizarraga-Valencia Aranza Hernandez-Zepeda Jacqueline F Palomares-Covarrubias Jorge HA Blackaller-Medina Jacqueline Soto-Hintze Mayra C Velarde-Castillo Dayri A Cruz-Melendrez 《World Journal of Clinical Cases》 SCIE 2025年第10期9-13,共5页
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre... Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI. 展开更多
关键词 Nitric oxide Cerebral ischemia/reperfusion injury Nitric oxide synthase Reactive nitrogen species NITROSYLATION
暂未订购
Split nitrogen application increases maize root growth,yield,and nitrogen use efficiency under soil warming conditions 被引量:2
9
作者 Zhenqing Xia Yuxiang Gong +3 位作者 Xiangyue Lyu Junchen Lin Yi Yang Haidong Lu 《The Crop Journal》 2025年第2期565-575,共11页
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e... The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress. 展开更多
关键词 Maize(Zea mays L.) Soil warming Split nitrogen application Root growth Nitrogen use efficiency Grain yield
在线阅读 下载PDF
Water deficit affects the nitrogen nutrition index of winter wheat under controlled water conditions 被引量:1
10
作者 Ben Zhao Anzhen Qin +7 位作者 Wei Feng Xinqiang Qiu Pingyan Wang Haixia Qin Yang Gao Guojie Wang Zhandong Liu Syed Tahir Ata-Ul-Karim 《Journal of Integrative Agriculture》 2025年第2期724-738,共15页
Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N... Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status. 展开更多
关键词 critical nitrogen concentration shoot biomass plant nitrogen accumulation soil nitrate N concentration soil water content
在线阅读 下载PDF
Pyridine-nitrogen conjugated covalent organic frameworks for high-efficiency gas-solid photocatalytic reduction of CO_(2)to CO 被引量:2
11
作者 Haicheng Jiang Chi Cao +10 位作者 Wei Liu Hao Zhang Qianyu Li Siyuan Zhu Xiaoning Li Jinshuo Li Jinfa Chang Wei Hu Zihao Xing Xiaoqin Zou Guangshan Zhu 《Journal of Energy Chemistry》 2025年第5期127-135,共9页
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova... The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur. 展开更多
关键词 Light-driven CO_(2)reduction Gas-solid reaction Conjugated pyridine nitrogen Covalent organic framework CO_(2)catalysis to CO
在线阅读 下载PDF
Denitrification enhanced by composite carbon sources in AAO-biofilter:Efficiency and metagenomics research 被引量:1
12
作者 Fan Guo Guokai Yan +8 位作者 Haiyan Wang Lingling Shi Yanjie Zhang Yu Ling Youfang Wei Huan Wang Weiyang Dong Yang Chang Ziyang Tian 《Journal of Environmental Sciences》 2025年第4期25-35,共11页
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob... Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application. 展开更多
关键词 AAO BIOFILTER Composite carbon source Nitrogen removal METAGENOMICS
原文传递
Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes 被引量:1
13
作者 Zimeng Liang Xidan Cao +4 位作者 Rong Gao Nian Guo Yangyang Tang Vinay Nangia Yang Liu 《Journal of Integrative Agriculture》 2025年第2期497-516,共20页
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ... The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration. 展开更多
关键词 BRASSINOSTEROIDS fertile florets nitrogen application rate sucrose metabolism WHEAT
在线阅读 下载PDF
Radiation investigation behind 4.7 km/s shock waves with nitrogen using a square section shock tube 被引量:1
14
作者 Senhao Zhang Yuzhe Zhang +6 位作者 Yixin Xu Tianrui Bai Kai Luo Renjie Li Qiu Wang Xin Lin Fei Li 《Acta Mechanica Sinica》 2025年第3期13-22,共10页
The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium rad... The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy. 展开更多
关键词 Nitrogen radiation NON-EQUILIBRIUM Spectral measurement Shock waves Shock tube
原文传递
Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation 被引量:1
15
作者 Xiao Hu Wang Bin Wu +4 位作者 Yongfa Zhu Dingsheng Wang Nian Bing Li Zhichuan J.Xu Hong Qun Luo 《Nano-Micro Letters》 2025年第8期111-170,共60页
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as... Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems. 展开更多
关键词 Scale-up Mild nitrogen photo-fixation Design refinements Catalyst system Environmental sustainability
在线阅读 下载PDF
Reduced Salinity Interacts with Enriched Nitrogen to Enhance the Photosynthetic Efficiency of Chlorophyta Ulva fasciata 被引量:1
16
作者 WAN Mingyue BAI Lingling +3 位作者 NI Guangyan LI Li TAN Yehui LI Gang 《Journal of Ocean University of China》 2025年第1期130-138,共9页
Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological infor... Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological information associated with environmental changes as it reflects their growth potential.To evaluate the effects of the changes in salinity and nutrients,the photosynthetic efficiency of a green macroalga Ulva fasciata from the Daya Bay was tested at a range of salinity(i.e.,31 to 10 psu)and nitrogen content(i.e.,5 to 60μmol L^(-1)).The results showed that cellular chlorophyll a(Chl a),carbohydrate and protein contents of U.fasciata were increased due to reduced salinity,and were decreased by interactive nitrogen enrichment.Within a short culture period(i.e.,18 h),the reduced salinity decreased the maximum photosynthetic efficiency(rETRmax and Pmax)derived from the rapid light response curve and photosynthetic oxygen evolution rate versus irradiance curve,respectively,as well as the saturation irradiance(E_(K)).This reducing effect diminished with enlonged cultivation time and reversed to a stimulating effect after 24 h of cultivation.The nitrogen enrichment stimulated the rETRmax and Pmax,as well as the E_(K),regardless of salinity,especially within short-term cultivation period(i.e.,<24 h).In addition,our results indicate that seawater freshening lowers the photosynthetic efficiency of U.fasciata in the short term,which is mitigated by nitrogen enrichment,but stimulates it in the long term,providing insight into how macroalgae thrive in coastal or estuarine waters where salinity and nutrients normally covary strongly. 展开更多
关键词 reduced salinity nitrogen enrichment photosynthetic efficiency Ulva fasciata Daya Bay
在线阅读 下载PDF
Role of urea in the retention of DON in soil by clay minerals:Analysis based upon molecular weight 被引量:1
17
作者 Leyun Wang Miao Li Xiang Liu 《Journal of Environmental Sciences》 2025年第4期362-372,共11页
As a widely used fertilizer,urea significantly promotes the leaching of dissolved organic nitrogen(DON)in soils and aggravates nitrogen contamination in groundwater.Clayminerals are considered the most important facto... As a widely used fertilizer,urea significantly promotes the leaching of dissolved organic nitrogen(DON)in soils and aggravates nitrogen contamination in groundwater.Clayminerals are considered the most important factor in retaining DON.However,the effect of urea on the retention of DON with different molecular weights by clay minerals is unknown.In this study,the retention of both low-molecular weight DON(LMWD)and high-molecular weight DON(HMWD)by clay minerals in the presence of urea was investigated.For this purpose,batch adsorption and soil column leaching experiments,characterization analysis(Fourier transform infrared spectroscopy X-ray diffraction,and X-ray photoelectron spectroscopy),and molecular dynamics simulations were carried out.Urea had a positive effect on the adsorption of LMWD,whereas a competitive effect existed for the adsorption of HMWD.The dominant interactions among DON,urea,and clay minerals included H-bonding,ligand exchange,and cation exchange.The urea was preferentially adsorbed on clay minerals and formed a complex,which provided more adsorption sites to LMWD and only a few to HMWD.The presence of urea increased the retention of LMWD and decreased the retention of HMWD in clay minerals.The retention capacity of LMWD increased by 6.9%–12.8%,while that of HMWD decreased by 6.7%–53.1%.These findings suggest that LMWD tended to be trapped in soils,while HMWD was prone to be leached into groundwater,which can be used to evaluate the leaching of DON from soil to groundwater. 展开更多
关键词 UREA Dissolved organic nitrogen Clay mineral Molecular dynamics RETENTION
原文传递
Prospects for synthetic biology in 21^(st) century agriculture 被引量:1
18
作者 Xingyan Ye Kezhen Qin +1 位作者 Alisdair R.Fernie Youjun Zhang 《Journal of Genetics and Genomics》 2025年第8期967-986,共20页
Plant synthetic biology has emerged as a transformative field in agriculture,offering innovative solutions to enhance food security,provide resilience to climate change,and transition to sustainable farming practices.... Plant synthetic biology has emerged as a transformative field in agriculture,offering innovative solutions to enhance food security,provide resilience to climate change,and transition to sustainable farming practices.By integrating advanced genetic tools,computational modeling,and systems biology,researchers can precisely modify plant genomes to enhance traits such as yield,stress tolerance,and nutrient use efficiency.The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges.Here,we highlight recent advancements and applications of plant synthetic biology in agriculture,focusing on key areas such as photosynthetic efficiency,nitrogen fixation,drought tolerance,pathogen resistance,nutrient use efficiency,biofortification,climate resilience,microbiology engineering,synthetic plant genomes,and the integration of artificial intelligence with synthetic biology.These innovations aim to maximize resource use efficiency,reduce reliance on external inputs,and mitigate environmental impacts associated with conventional agricultural practices.Despite challenges related to regulatory approval and public acceptance,the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems,contributing to global food security and environmental sustainability.Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility. 展开更多
关键词 Plant synthetic biology PHOTOSYNTHESIS Nitrogen fixation Al integration Geneticcircuits Precision agriculture
原文传递
Exploring the HONO source during the COVID-19 pandemic in a megacity in China 被引量:1
19
作者 Mingkai Wang Shenbo Wang +6 位作者 Ruiqin Zhang Minghao Yuan Yifei Xu Luqi Shang Xinshuai Song Xinyuan Zhang Yunxiang Zhang 《Journal of Environmental Sciences》 2025年第3期616-627,共12页
HONO is a critical precursor of•OH,but its sources are controversial due to its complex formation mechanism.This study conducted comprehensive observations in Zhengzhou from April 26 to May 11,2022.Low NO_(x)concentra... HONO is a critical precursor of•OH,but its sources are controversial due to its complex formation mechanism.This study conducted comprehensive observations in Zhengzhou from April 26 to May 11,2022.Low NO_(x)concentrations were observed during the Covid epidemic period(EP)(10.4±3.0 ppb),compared to the pre-epidemic period(PEP)(12.5±3.8 ppb).The mean HONO concentration during EP(0.53±0.34 ppb)was 0.09 ppb lower than that during PEP(0.62±0.53 ppb).The decrease in HONO concentration during EP came mainly at night due to the reduction in the direct emission(P_(emi))(0.03 ppb/hr),the homogeneous reaction between•OHandNO(P_(OH+NO))(0.02 ppb/hr),and the heterogeneous conversion of NO_(2)on the ground(0.01 ppb/hr).Notably,there was no significant change in daytime HONO concentration.The daytime HONO budget indicated that the primary HONO sources during PEP were the nitrate photolysis(P_(nitrate)),followed by the P_(OH+NO),Pemi,the photo-enhanced reaction of NO_(2)on the ground(P_(ground+hv))and aerosol surface(Paerosol+hv).The primary HONO sources were Pnitrate,POH+NO,P_(emi),and_(Paerosol+hv)during EP,respectively.The missing source has a high correlation with solar radiation,there might be other photo-related HONO sources or the contributions of photosensitized reactions were underestimated.In the extremely underestimated cases,HONO production rates fromthe P_(nitrate),P_(ground+hv),and Paerosol+hv increased by 0.17,0.10,and 0.10 ppb/hr during PEP,0.23,0.13,and 0.16 ppb/hr during EP,and P_(nitrate)was still the primary source during both PEP and EP. 展开更多
关键词 Nitrous acid Nitrogen oxides COVID-19 HONO budget Unknown sources
原文传递
Efficient chlorination reaction of Pt/RuO_(2)/g-C_(3)N_(4)under visible light irradiation for simultaneous removal of ammonia and bacteria from mariculture wastewater 被引量:1
20
作者 Yizhan Zhang Min Zhao +2 位作者 Yida Huang Yan-Ling Hu Lei Wang 《Journal of Environmental Sciences》 2025年第4期490-502,共13页
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit... The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight. 展开更多
关键词 PHOTOCATALYSIS Mariculture wastewater Ammonia nitrogen Visible light irradiation Microbial inactivation
原文传递
上一页 1 2 214 下一页 到第
使用帮助 返回顶部