期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Enhanced Denitrification in Constructed Wetlands with Low Carbon/Nitrogen Ratios:Insights into Reallocation of Carbon Metabolism Based on Electron Utilization
1
作者 Hong-Tao Shi Xiao-Chi Feng +7 位作者 Zi-Jie Xiao Chen-Yi Jiang Wen-Qian Wang Qin-Yao Zeng Bo-Wen Yang Qi-Shi Si Qing-Lian Wu Nan-Qi Ren 《Engineering》 2025年第2期222-233,共12页
Constructed wetlands(CWs) are a promising method to treat effluent from wastewater treatment plants(WWTPs),However,low carbon/nitrogen(C/N) ratios of the influent inhibit denitrification in CWs,resulting in poor nitro... Constructed wetlands(CWs) are a promising method to treat effluent from wastewater treatment plants(WWTPs),However,low carbon/nitrogen(C/N) ratios of the influent inhibit denitrification in CWs,resulting in poor nitrogen removal efficiency.Herein,we compared traditional(control),biochar(BC), andβ-cyclodextrin-fu nctionalized biochar(BC@β-CD) CW systems to investigate nitrogen removal from influent with low C/N ratios,and the mechanisms that enhance this process.The highest nitrogen removal rates were observed in the BC@β-CD group,with rates 45.89% and 42.48% higher than those of the control,accompanied by a 70.57% and 85.45% decrease in nitrous oxide release,when the C/N ratio decreased from4 to 2,respectively.Metagenomic and enzymatic analyses indicated that BC@β-CD enhances nitrogen removal by coordinately promoting carbon metabolism and increasing denitrification enzyme activities,without affecting microbial species diversity in CWs.Structural equation modeling confirmed that the foremost advantages of BC@β-CD were effective electron generation and transportation resulting from increased activities of nicotinamide adenine dinucleotide(NADH) dehydrogenase and the electron transfer system(ETS),thereby strategically reallocating more carbon metabolic flow to support denitrification.Our results show that the application of BC@β-CD in CWs to optimize the reallocation of electrons from carbon metabolism is a feasible strategy to enhance denitrification under low C/N conditions. 展开更多
关键词 Constructed wetland b-Cyclodextrin Biochar nitrogen removal Carbon metabolism Electron transfer efficiency
在线阅读 下载PDF
Advancing autotrophic nitrogen removal in low C/N ratio wastewater: Innovative application of supercapacitor to enhance microbial electrolysis cells
2
作者 Sen Fan Yuhan Song +4 位作者 Decong Zheng Xinyuan Peng Sitao Li Ping Gao Daping Li 《Journal of Environmental Sciences》 2025年第6期87-98,共12页
This study presents a novel approach,the Supercapacitor Microbial Electrolysis Cell(SCMEC),which utilizes a supercapacitor as an external power source to enhance the efficiency of autotrophic nitrogen removal in low C... This study presents a novel approach,the Supercapacitor Microbial Electrolysis Cell(SCMEC),which utilizes a supercapacitor as an external power source to enhance the efficiency of autotrophic nitrogen removal in low C/N ratio wastewater.The results demonstrated that the SC-MEC system,operating under anaerobic conditions and devoid of any organic carbon source,exhibited exceptional performance in ammonia oxidation and total nitrogen(TN)removal when solely relying on ammonia nitrogen as the electron donor.Operating at a voltage of 1.8 V with a capacitance capacity of 30 F,ammonium oxidation rated up to 56.51 mg/L/day and TN removal rated up to 54.64 mg/L/day,in which 97%of ammonium nitrogen was converted to gaseous nitrogen.Furthermore,the charging and discharging process of supercapacitors autonomously regulated the bipolar potentials.Cyclic voltammetry(CV)analysis showed the significantly enhanced electrochemical activity of the SCMEC system during the reaction process.Based on in-situ CV test results,itwas inferred that this enhancementwas associated with extracellular electron transfer mediators.Themicrobial community analysis revealed a process of synchronous nitrification and denitrification(SND)coupled with anammox,involvingmultiple genera,such as Candidatus Kuenenia,Nitrosomonas,Truepera,and Bosea.In conclusion,this study highlights the tremendous potential of SC-MEC in achieving efficient autotrophic nitrogen removal,offering more feasible and economical solutions for addressing low C/N water pollution issues. 展开更多
关键词 SUPERCAPACITOR Microbial electrolytic cell(MEC) Low C/N ratio Autotrophic nitrogen removal Synchronous nitrification and denitrification(SND) ANAMMOX
原文传递
Stable partial nitrification was achieved for nitrogen removal from municipal wastewater by gel immobilization:A pilot-scale study
3
作者 Xin Hu Hong Yang +5 位作者 Xiaoyue Fang Xuyan Liu Jiawei Wang Xiaotong Wang Yongsheng Bai Bojun Su 《Journal of Environmental Sciences》 2025年第5期529-539,共11页
As an energy and carbon saving process for nitrogen removal from wastewater,the partial nitrification and denitrification process(PN/D)has been extensively researched.However,achieving stable PNinmunicipalwastewater h... As an energy and carbon saving process for nitrogen removal from wastewater,the partial nitrification and denitrification process(PN/D)has been extensively researched.However,achieving stable PNinmunicipalwastewater has always been challenging.In this study,a gel immobilized PN/D nitrogen removal process(GI-PN/D)was established.A 94 days pilot-scale experiment was conducted using real municipal wastewater with an ammonia concentration of 43.5±5.3mg N/L at a temperature range of 11.3–28.7◦C.The nitrogen removal performance and associated pathways,shifts in the microbial community as well as sludge yield were investigated.The results were as follows:the effluent TN and COD were 0.6±0.4mg/L and 31.1±3.8 mg/L respectively,and the NAR exceeding 95%.GI-PN/D achieved deep nitrogen removal ofmunicipalwastewater through stable PN without taking any othermeasures.The primary pathways for nitrogen removal were identified as denitrification,simultaneous nitrification-denitrification,and aerobic denitrification.High-throughput sequencing analysis revealed that the immobilized fillers facilitated the autonomous enrichment of functional bacteria in each reactor,effectively promoting the dominance and stability of the microbial communities.In addition,GI-PN/D had the characteristic of low sludge yield,with an average sludge yield of 0.029 kg SS/kg COD.This study provides an effective technical for nitrogen removal from municipal wastewater through PN. 展开更多
关键词 Gel immobilization Partial nitrification Deep nitrogen removal Autonomous enrichment Sludge yield
原文传递
Synergistic toxic effects of high-strength ammonia and ZnO nanoparticles on biological nitrogen removal systems and role of exogenous C_(10)-HSL regulation
4
作者 Runyu Zhao Huan Gao +1 位作者 Lijie Duan Ran Yu 《Journal of Environmental Sciences》 2025年第4期385-394,共10页
The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the eff... The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats. 展开更多
关键词 Biological nitrogen removal system Quorum sensing N-acyl-homoserine lactone Zinc oxide nanoparticle Ammonia concentration
原文传递
Design and optimization of microalgae photobioreactors for treatment of nitrogen and phosphorus in wastewater
5
作者 Shanyu Xie Yuanpeng Wang Qingbiao Li 《Chinese Journal of Chemical Engineering》 2025年第10期222-232,共11页
The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention,positioning it as one of the most promising and sustainable strategies in modern wastewater treatment.While v... The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention,positioning it as one of the most promising and sustainable strategies in modern wastewater treatment.While various photobioreactors(PBRs)configurations have been widely applied for microalgae cultivation,limited research has focused on optimizing PBR design specificallyto enhance nitrogen and phosphorus removal efficiency.The high operational costs of wastewater treatment,combined with the inherent variability of microalgal growth,have prompted the search for advanced solutions that improve nitrogen and phosphorus removal while minimizing resource consumption and enabling predictive process control.Recently,the integration of PBR systems with artificialintelligence and machine learning(AI/ML)modeling has emerged as a transformative approach to enhancing nutrient removal,particularly for nitrogen and phosphorus.This study firstsummarizes existing PBR designs tailored for diverse applications,then outlines strategies for system enhancement through the optimization of mixing methods,construction materials,light intensity,and light source configuration.Furthermore,computational fluiddynamics(CFD)and AI/ML modeling are presented as tools to guide the structural design and operational optimization of microalgae-based nitrogen and phosphorus removal processes.Finally,future research directions and key challenges are discussed. 展开更多
关键词 MICROALGAE PHOTOBIOREACTOR Design Optimization nitrogen phosphorus removal ARTIFICIALINTELLIGENCE
在线阅读 下载PDF
Comparative study of two biological nitrogen removal processes:A/O process and step-feeding process 被引量:3
6
作者 祝贵兵 彭永臻 +1 位作者 王淑莹 马斌 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期528-531,共4页
Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi... Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability. 展开更多
关键词 activated sludge biological nitrogen removal A/O process step-feeding process efficiency
在线阅读 下载PDF
Nitrogen Release Kinetics and Nitrification-Denitrification on Surface Sediments under Aerating Disturbance Condition 被引量:5
7
作者 林佩祯 余光伟 +3 位作者 种云霄 肖航 许诺 黄梅 《Agricultural Science & Technology》 CAS 2012年第8期1733-1737,共5页
[Objective] This study aimed to investigate the nitrogen release kinetics and nitrification-denitrification on surface sediments under aerating disturbance condition, with the purpose to solve the sediment nitrogen re... [Objective] This study aimed to investigate the nitrogen release kinetics and nitrification-denitrification on surface sediments under aerating disturbance condition, with the purpose to solve the sediment nitrogen release and secondary pollution problems. [Method] The effect of in situ sediments aeration on the release of nitrogen pollutants was investigated, and the nitrogen release kinetics parameters were analyzed. The process of nitrification and denitrification under sediments aeration condition was investigated in laboratory. [Result] The nitrogen released from sediments was enhanced by aeration disturbance. The concentration of NH4+-N and TN reached the maximum value in 30 min, and release rates were proportional to the disturbance strength. In this study, with the distance of aerator to the sediments surface of 0, 1, 2 and 3 cm, the suspended sediments concentrations were 3.52, 3.41, 3.26 and 3.01 g/L, respectively. Maximum release concentration of NH4+-N and TN were 14.3, 13.8, 13.2, 12.2 mg/L and 33.21, 30.98, 29.83, 27.30 mg/L, respec- tively. In addition, both NH4+-N and TN release kinetics could be described by Double Constant Equation as InC=A+Blnt. Nitrification reaction occurred and was promoted by continued aerating to sediments.The concentration of NH4+-N dropped down from 12.4 mg/L to 0.2 mg/L in 8 d, with the concentration of NO3--N increased to the maximum value of 10.8 mg/L. In addition, concentration of NO3--N and TN decreased from 10.8 mg/L and 37.4 mg/L to 0.36 mg/L and 23.2 mg/L after the stop of aeration for 12 d, indicating the occurrence of denitdfication reaction. Therefore, sediment aeration could accelerate nitrogen release and nitrification reaction, and with intermittent aeration, nitrogen could be removed from sediments in-situ by nitrification and denitrification. [Conclusion] The results provided technical reference for the in situ sediment remediation for the black-odor rivers in cities. 展开更多
关键词 In situ sediments aeration nitrogen release Nitrification and denitrification nitrogen removal Kinetics
在线阅读 下载PDF
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system 被引量:35
8
作者 PENG Yongzhen HOU Hongxun +2 位作者 WANG Shuying CUI Youwei Zhiguo Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期398-403,共6页
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was... To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified. 展开更多
关键词 oxidation ditch biological nitrogen removal biological phosphorus removal simultaneous nitrification and denitrification (SND) pilot scale municipal wastewater
在线阅读 下载PDF
Advances and challenges of sulfur-driven autotrophic denitrification(SDAD)for nitrogen removal 被引量:29
9
作者 Jiao-Jiao Wang Bao-Cheng Huang +1 位作者 Jun Li Ren-Cun Jin 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2567-2574,共8页
Sulfur-driven autotrophic denitrification(SDAD),a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon,is a promising biological nitrogen removal proce... Sulfur-driven autotrophic denitrification(SDAD),a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon,is a promising biological nitrogen removal process.However,the SDAD process was affected by many factors such as various electron donors,organic carbon and exogenous substances(e.g.,antibiotics and heavy metal),which prevent further application.Thus,we conducted a detailed review of previous studies on such influence factors and its current application.Besides,a comparative analysis was adopted to recognize the current challenges and future needs for feasible application,so as to ultimately perfect the SDAD process and extend its application scope. 展开更多
关键词 Biological nitrogen removal Microbial fuel cell Mixotrophic denitrification Sulfur-oxidizing bacteria(SOB) Sulfur-driven autotrophic denitrification ANAMMOX
原文传递
Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process 被引量:18
10
作者 Xiang Li Ming-yu Lu +2 位作者 Yong Huang Yi Yuan Yan Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第4期291-300,共10页
In this study,a denitrification(DN)–partial nitritation(PN)–anaerobic ammonia oxidation(Anammox)system for the efficient nitrogen removal of mature landfill leachate was built with a zone-partitioning self-reflux bi... In this study,a denitrification(DN)–partial nitritation(PN)–anaerobic ammonia oxidation(Anammox)system for the efficient nitrogen removal of mature landfill leachate was built with a zone-partitioning self-reflux biological reactor as the core device,and the effects of changes in seasonal temperature on the nitrogen removal in non-temperature-control environment were explored.The results showed that as the seasonal temperature decreased from 34℃to 11.3℃,the total nitrogen removal rate of the DN-PN-Anammox system gradually decreased from the peak value of 1.42 kg/(m^(3)·day)to 0.49 kg/(m^(3)·day).At low temperatures(<20℃),when the nitrogen load(NLR)of the system is not appropriate,the fluctuation of high NH_(4)^(+)-N concentration in the landfill leachate greatly influenced the stability of the nitrogen removal.At temperatures of 11℃–15℃,the NLR of the system is controlled below 0.5 kg/(m^(3)·day),which can achieve stable nitrogen removal and the nitrogen removal efficiency can reach above 96%.The abundance of Candidatus Brocadia gradually increased with the decrease of temperature.Nitrosomonas,Candidatus Brocadia and Candidatus Kuenenia as the main functional microorganisms in the low temperature. 展开更多
关键词 Landfill leachate Denitrification-partial nitrification-Anammox Seasonal temperature nitrogen removal Microbiology community
原文传递
An autotrophic nitrogen removal process:Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate 被引量:26
11
作者 Jie Liu Jian'e Zuo +3 位作者 Tang Yang Shuquan Zhu Sulin Kuang Kaijun Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期777-783,共7页
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow ... A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate. 展开更多
关键词 landfill leachate short-cut nitrification anaerobic ammonia oxidation autotrophic nitrogen removal
在线阅读 下载PDF
Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process 被引量:20
12
作者 ZHU Gui-bing PENG Yong-zhen +2 位作者 WU Shu-yun WANG Shu-ying XU Shi-wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1043-1048,共6页
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence... The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc. 展开更多
关键词 biological nitrogen removal dissolved oxygen floc size simultaneous nitrification and denitrification step feeding process
在线阅读 下载PDF
Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature 被引量:13
13
作者 Xiaoyan Chang Dong Li +5 位作者 Yuhai Liang Zhuo Yang Shaoming Cui Tao Liu Huiping Zeng Jie Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第4期688-697,共10页
The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different con... The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23℃). The average removal rate and removal loading of NH4+-N and TN was 83.90%, 1.26 kg N/(m3.day), and 70.14%, 1.09 kg N/(m3.day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions. 展开更多
关键词 completely autotrophic nitrogen removal over nitrite bio-filter ANAMMOX pH dissolved oxygen ALKALINITY
原文传递
Nitrogen Removal by Simultaneous Nitrification and Denitrification via Nitrite in a Sequence Hybrid Biological Reactor 被引量:13
14
作者 王建龙 彭永臻 +1 位作者 王淑莹 高永青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期778-784,共7页
Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. S... Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments. 展开更多
关键词 nitrogen removal simultaneous nitrification and denitrification nitrite accumulation demand oxygen PH
在线阅读 下载PDF
Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch 被引量:11
15
作者 GAO Shou-you PENG Yong-zhen +1 位作者 WANG Shu-ying YAN Jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期833-839,共7页
A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved ... A pilot-scale Orbed oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average M LSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a scries of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon. 展开更多
关键词 nitrogen removal simultaneous nitrification and denitrification low DO MLSS novel bacterial
在线阅读 下载PDF
Bamboo charcoal addition enhanced the nitrogen removal of anammox granular sludge with COD:Performance,physicochemical characteristics and microbial community 被引量:12
16
作者 Menglei Guo Ying Jiang +4 位作者 Junxiang Xie Qianfei Cao Qun Zhang Adams Mabruk Chongjun Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期55-64,共10页
The effects of different chemical oxygen demand(COD)concentrations on the anammox granular sludge with Bamboo Charcoal(BC)addition were evaluated in UASB reactor.The results showed that the average total nitrogen(TN)r... The effects of different chemical oxygen demand(COD)concentrations on the anammox granular sludge with Bamboo Charcoal(BC)addition were evaluated in UASB reactor.The results showed that the average total nitrogen(TN)removal efficiency was reduced from 85.9%to 81.4%when COD concentration was increased from 50 to 150 mg/L.However,the TN removal efficiency of BC addition reactors was dramatically 3.1%-6.4%higher than that without BC under different COD concentrations.The average diameter of granular sludge was 0.13 mm higher than that without BC.The settling velocity was increased by elevated COD concentration,while the EPS and VSS/SS were increased with BC addition.The high-throughput Miseq sequencing analyses revealed that the bacterial diversity and richness were decreased under COD addition,and the Planctomycetes related to anammox bacteria were Candidatus Brocadia and Candidatus Kuenenia.The Metagenomic sequencing indicated that the abundance of denitrification related functional genes all increased with elevated COD,while the abundance of anammox related functional genes of decreased.The func-tional genes related to anammox was hydrazine synthase encoding genes(hzsA,hzsB and hzsB).The average relative abundance of hzs genes in the reactor with BC addition was higher than the control at COD concentrations of 50 mg/L and 150 mg/L.The functional genes of denitrification mediated by BC were higher than those without BC throughout the operation phase.It is interesting to note that BC addition greatly enriched the related func-tional genes of denitrification and anammox. 展开更多
关键词 Anammox granular sludge Bamboo charcoal COD concentration nitrogen removal Microbial community
原文传递
Effects of tourmaline on nitrogen removal performance and biofilm structures in the sequencing batch biofilm reactor 被引量:11
17
作者 Chong Tan Haoran Xu +7 位作者 Di Cui Jinlong Zuo Junsheng Li Yubin Ji Shan Qiu Lin Yao Ying Chen Yingjie Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期127-135,共9页
The effects of tourmaline on nitrogen removal performance and biofilm structures were comparatively investigated in two identical laboratory-scale sequencing batch biofilm reactors(SBBRs)(denoted SBBR1 and SBBR2) ... The effects of tourmaline on nitrogen removal performance and biofilm structures were comparatively investigated in two identical laboratory-scale sequencing batch biofilm reactors(SBBRs)(denoted SBBR1 and SBBR2) at different nitrogen loading rates(NLRs) varying from(0.24 ± 0.01) to(1.26 ± 0.02) g N/(L·day). SBBR1 was operated in parallel with SBBR2, but SBBR1 was filled with polyurethane foam loaded tourmaline(TPU) carriers and another(SBBR2) filled with polyurethane foam(PU) carriers. Results obtained from this study showed that the excellent and stable performance of SBBR1 was obtained. Ammonia nitrogen removal and total nitrogen removal were higher in SBBR1 than that in SBBR2 with increase of NLR. At an NLR of(0.24 ± 0.01) g N/(L·day), the majority of the spherical and elliptical bacteria were surrounded by the extracellular polymeric substance(EPS) and bacillus or filamentous bacteria in two SBBRs biofilms. When NLR increased to(1.26 ± 0.02) g N/(L·day), the clusters were more obvious in the SBBR1 biofilm than that in the SBBR2 biofilm. Bacteria in SBBR1 were inclined to synthesis more EPS, and the formed EPS could protect the bacteria from free ammonia(FA) under extreme condition NLR(1.26 ± 0.02) g N/(L·day). The results of polymerase chain reaction-denaturing gradient gel electrophoresis analysis showed that the microbial community similarity in SBBR2 decreased more obviously than that in SBBR1 with the increase of NLR, which the microbial community in SBBR1 was relatively stable. 展开更多
关键词 TOURMALINE nitrogen removal performance Biofilm structures Population dynamics Sequencing batch biofilmreactor (SBBR)
原文传递
Achieving and maintaining biological nitrogen removal via nitrite under normal conditions 被引量:10
18
作者 CUI You-wei PENG Yong-zhen +2 位作者 GAN Xiang-qing YE Liu WANG Ya-yi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期794-797,共4页
The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments... The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments applying the sequencing batch reactor(SBR) activated sludge process to domestic wastewater with low C/N ratio. The addition of sodium chloride(NaCI) to influent was established to achieve nitrite build-up. The high nitrite accumulation, depending on the salinity in influent and the application duration of salt, was obtained in SBRs treating saline wastewater. The maintenance results indicated that the real-time SBRs can maintain stable nitrite accumulation, but conversion from shorter nitrification-denitrification to full nitrification-denitrification was observed after some operation cycles in the other SBR with fixed-time control. The presented method is valuable to offer a solution to realize and to maintain nitrogen removal via nitrite under normal conditions. 展开更多
关键词 nitrite accumulation salt selective inhibition real-time control of nitrification biological nitrogen removal via nitrite nitrite-oxidizers ammonium-oxidizers
在线阅读 下载PDF
Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations 被引量:9
19
作者 Magdalena Zielińska Katarzyna Bernat +2 位作者 Agnieszka Cydzik-Kwiatkowska Joanna Sobolewska Irena Wojnowska-Baryla 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第6期990-998,共9页
The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia... The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions. 展开更多
关键词 nitrogen removal activated sludge COD/N ratio oxygen concentration ammonia-oxidizing bacteria microbial diversity
原文传递
Applying real-time control to enhance the performance of nitrogen removal in CAST system 被引量:10
20
作者 WANG Shao-po PENG Yong-zhen +1 位作者 WANG Shu-ying GAO Shou-you 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期736-739,共4页
A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operati... A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy. 展开更多
关键词 cyclic activated sludge technology biological nitrogen removal real-time control oxidation-reduction potential(ORP)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部